

K Klinik II für Innere Medizin Nephrologie, Rheumatologie, Diabetologie und Allgemeine Innere Medizin

Interventions diététique: rationnel et résultats

Necker Seminars in Nephrology 2024

Roman-Ulrich Müller

Cologne Polycystic and Genetic Kidney Disease Center

Conflicts of interest

- scientific advisory boards: Vifor, Alnylam, AlCuris, GSK, Santa Barbara Nutrients, Ephyra
- research funding: Otsuka Pharmaceuticals, ThermoFisherScientific

Management of ADPKD – state of the art

- sufficient fluid intake (urine volume > 3 l/d)
- limit salt intake
- physical activity, avoid overweight
- healthy diet (e.g. mediterranean diet)
- blood pressure control !
- moderate coffee consumption, no smoking
- avoid estrogen supplementation

Management of ADPKD – state of the art

- sufficient fluid intake (urine volume > 3 l/d)
- limit salt intake
- physical activity, avoid overweight
- healthy diet (e.g. mediterranean diet)
- blood pressure control !
- moderate coffee consumption, no smoking
- avoid estrogen supplementation

Dietary salt restriction is beneficial in ADPKD

www.kidney-international.org

clinical investigation

Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease

Vicente E. Torres¹, Kaleab Z. Abebe², Robert W. Schrier³, Ronald D. Perrone⁴, Arlene B. Chapman⁵, Alan S. Yu⁶, William E. Braun⁷, Theodore I. Steinman⁸, Godela Brosnahan³, Marie C. Hogan¹, Frederic F. Rahbari⁹, Jared J. Grantham⁶, Kyongtae T. Bae², Charity G. Moore¹⁰ and Michael F. Flessner¹¹

¹Mayo Clinic College of Medicine, Rochester, Minnesota, USA; ²University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ³University of Colorado Health Sciences Center, Denver, Colorado, USA; ⁴Tufts Medical Center, Boston, Massachusetts, USA; ⁵University of Chicago, Chicago, Illinois, USA; ⁶Kansas University Medical Center, Kansas City, Kansas, USA; ⁷Cleveland Clinic, Cleveland, Ohio, USA; ⁸Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; ⁹Emory University School of Medicine, Atlanta, Georgia, USA; ¹⁰Carolinas HealthCare System, Charlotte, North Carolina, USA; and ¹¹National Institutes of Health, Bethesda, Maryland, USA

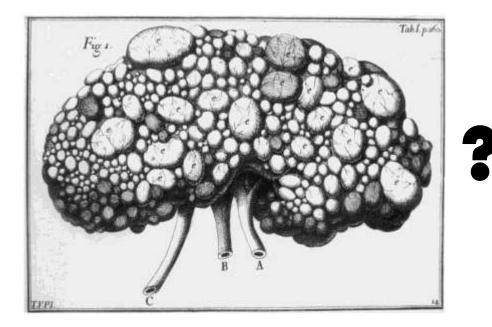
- 0.09 ml/min/year increase of eGFR loss per 1 gram of salt

Dietary salt restriction is beneficial in ADPKD

www.kidney-international.org

clinical investigation

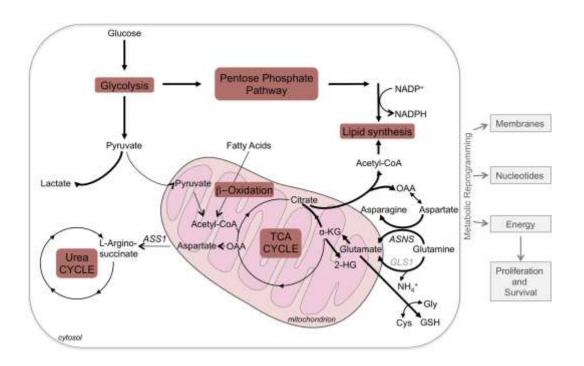
Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease


Vicente E. Torres¹, Kaleab Z. Abebe², Robert W. Schrier³, Ronald D. Perrone⁴, Arlene B. Chapman⁵, Alan S. Yu⁶, William E. Braun⁷, Theodore I. Steinman⁸, Godela Brosnahan³, Marie C. Hogan¹, Frederic F. Rahbari⁹, Jared J. Grantham⁶, Kyongtae T. Bae², Charity G. Moore¹⁰ and Michael F. Flessner¹¹

¹Mayo Clinic College of Medicine, Rochester, Minnesota, USA; ²University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ³University of Colorado Health Sciences Center, Denver, Colorado, USA; ⁴Tufts Medical Center, Boston, Massachusetts, USA; ⁵University of Chicago, Chicago, Illinois, USA; ⁶Kansas University Medical Center, Kansas City, Kansas, USA; ⁷Cleveland Clinic, Cleveland, Ohio, USA; ⁸Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; ⁹Emory University School of Medicine, Atlanta, Georgia, USA; ¹⁰Carolinas HealthCare System, Charlotte, North Carolina, USA; and ¹¹National Institutes of Health, Bethesda, Maryland, USA

our approach: < 5-7 g sodium chloride per day

Management of ADPKD – state of the art


- sufficient fluid intake (urine volume > 3 l/d)
- limit salt intake
- physical activity, avoid overweight
- healthy diet (e.g. mediterranean diet)
- blood pressure control !
- moderate coffee consumption, no smoking
- avoid estrogen supplementation

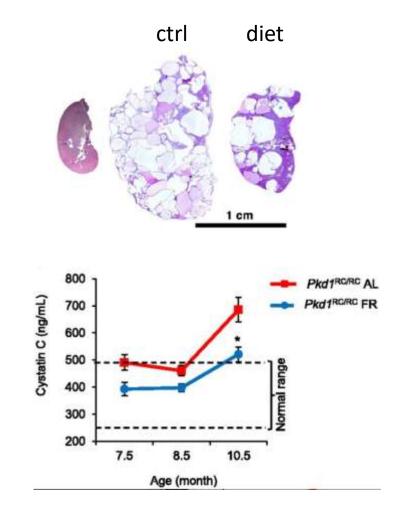
Domenico Gusmano Galeazzi (1757)

ADPKD is a metabolic disorder

- Warburg effect
- glutamine anaplerosis
- defective TCA cycle
- defective OXPHOS
- reduced FA oxidation
- enhanced FA biosynthesis

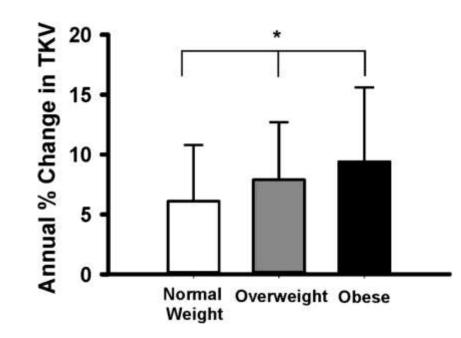
Metabolism...

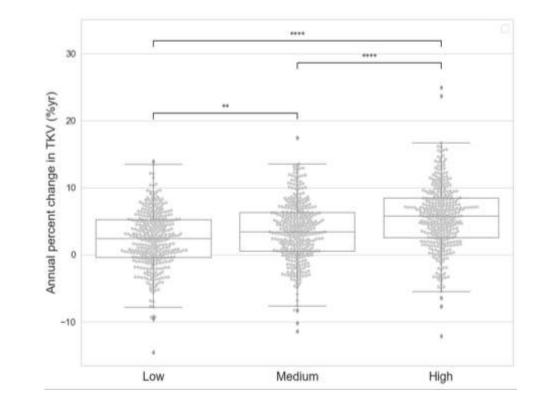
The main purposes of metabolism are:


- 1. the conversion of the energy in **food to energy** available to cells
- 2. the conversion of **food to building blocks**

Caloric restriction reduces cyst growth

- 23% calorie restriction
- PKD1^{cond/cond}:Nes^{Cre}
- day 35 until day 84

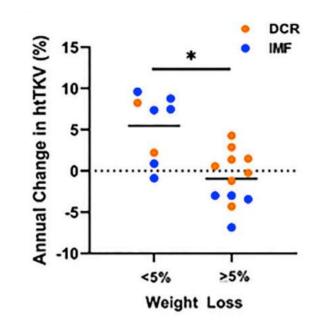

- 40% calorie restriction
- PKD1^{RC/RC}
- 5.5 months 8.5 months


Kipp et al. Am J Physiol Renal Physiol. 2016 Apr 15; 310(8): F726–F731. Warner et al. J Am Soc Nephrol. 2016 May;27(5):1437-47.

Overweight and obesity are associated with faster disease progression in ADPKD

- posthoc analysis HALT-PKD
- 441 patients

Visceral adiposity associates with more rapid kidney growth


posthoc analysis TEMPO 3:4

Nowak et al. AJKD 2024 https://doi.org/10.1053/j.ajkd.2024.02.014

Weight reduction is associated with slower kidney growth in ADPKD

28 overweight or obese ADPKD patients1 year dietary interventionrandomized daily caloric restriction vs. intermittent fasting

Hopp, ... and Nowak iScience 2022

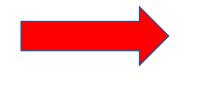
Is it really all just about the amount of food?

Is reducing calorie intake required for the effect?

What exactly happens in the metabolism of a mouse on a diet?

• if mice get less food, they eat everything at once

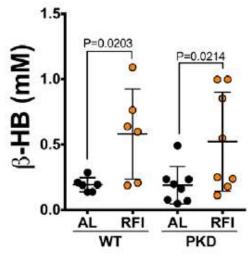
- if mice get less food, they eat everything at once
- and when there is nothing left...


...time-restricted feeding is the consequence

- if mice get less food, they eat everything at once
- and when there is nothing left...

...time-restricted feeding is the consequence

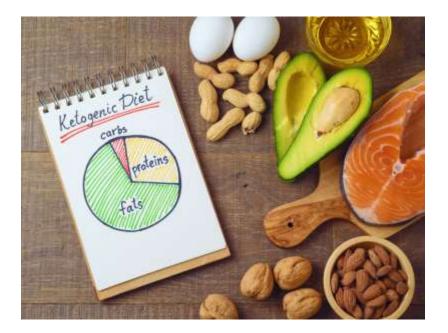
the body starts burning fat instead of sugar



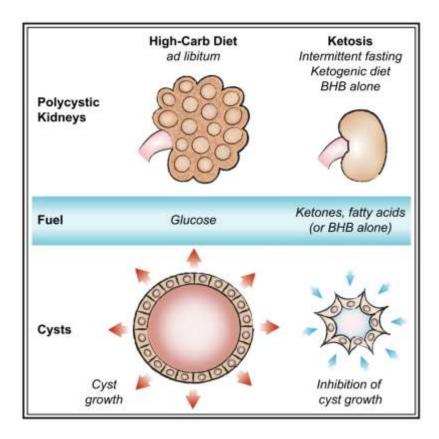
formation of "ketone bodies"

- if mice get less food, they eat everything at once
- and when there is nothing left...
 - ...time-restricted feeding is the consequence

PKD1^{cond/cond}:Nes^{cre} mice on caloric restriction

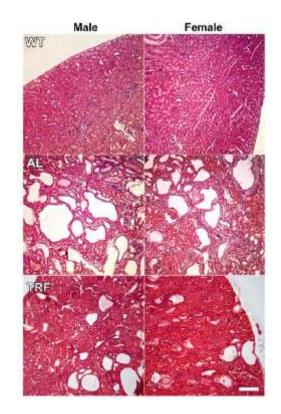

Torres et al. Cell Metabolism 2019

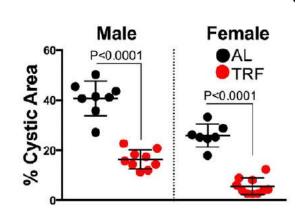
How can we reach a ketogenic state?


Intermittent fasting

ketogenic diet

- increase of fat intake
- massive reduction of carbohydrate intake (~20 g/d)
- normal protein intake

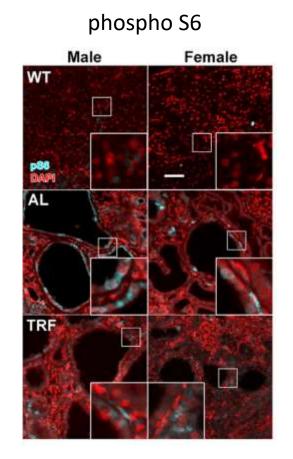

It's indeed not only about calories...

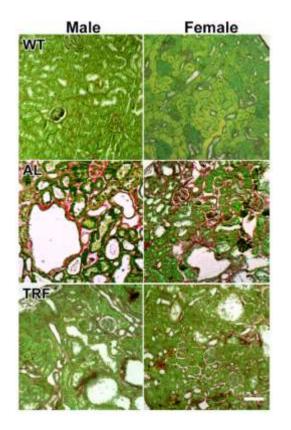


caloric restriction induces ketone body formation

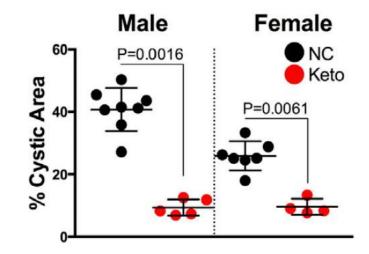
 ketogenic dietary interventions ameliorate PKD in animal models

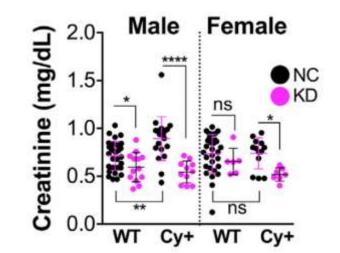
ketogenic dietary interventions inhibit cyst formation in animal models




Han:SPRD rats time-restricted feeding 5 weeks, from 3 wks of age

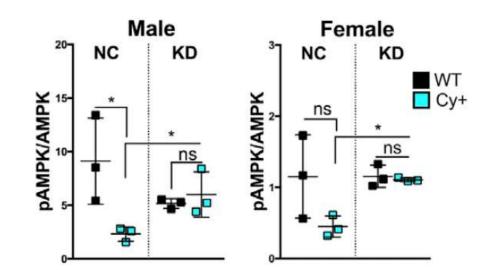
ketogenic dietary interventions reduce mTORC signaling and fibrosis


sirius red



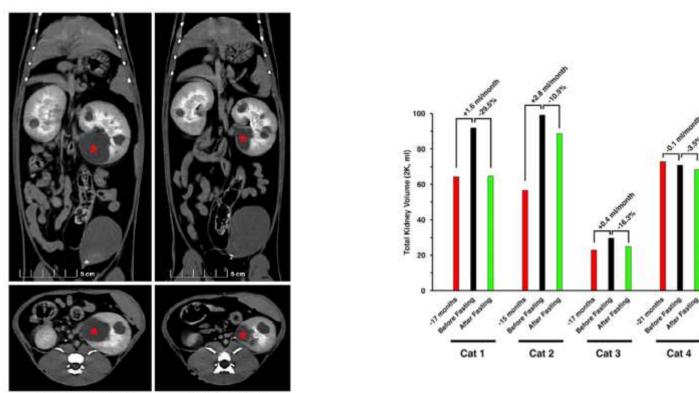
Han:SPRD rats time-restricted feeding

ketogenic dietary interventions – impact on kidney function



Han:SPRD rats ketogenic diet 5 weeks, from 3 wks of age

ketogenic dietary interventions restore AMPK activity



Han:SPRD rats ketogenic diet 5 weeks. from 3 wks

5 weeks, from 3 wks of age

fast-acting effects of ketosis

Before fasting

After fasting

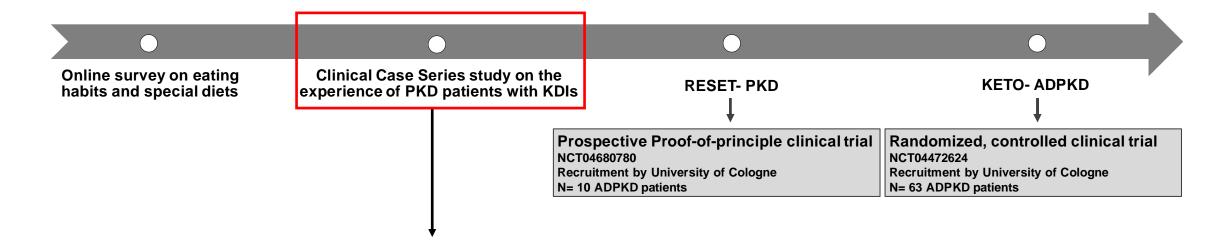
Torres, ... and Weimbs Cell Metabolism 2019

orthologous feline ADPKD model fasting 72 hours

Ketogenic diets inhibit cyst formation in animal models...

Should all ADPKD patients follow

a ketogenic diet now?

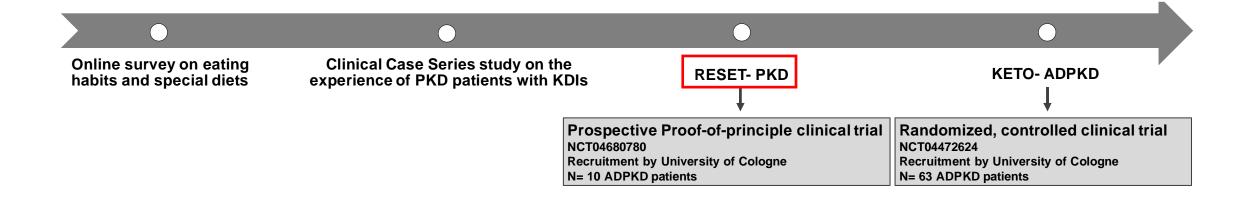

Ketogenic diets inhibit cyst formation in animal models...

Should all ADPKD patients follow

a ketogenic diet now?

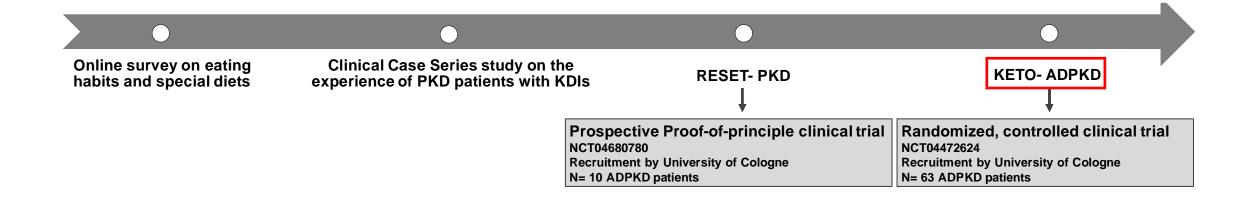
No, data in humans are missing !

A translational pipeline for ketogenic interventions in ADPKD

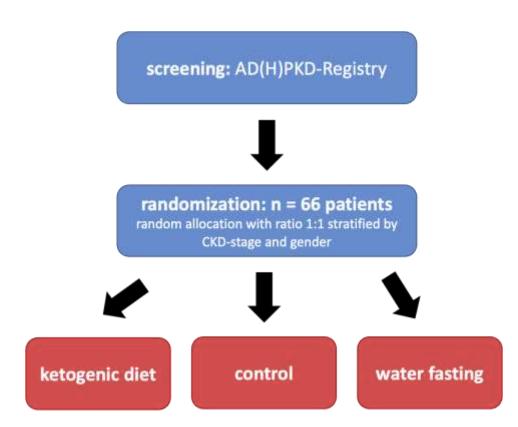


131 ADPKD patients that had already used ketogenic dietary interventions

questions about well-being, feasibility and potential (side) effects



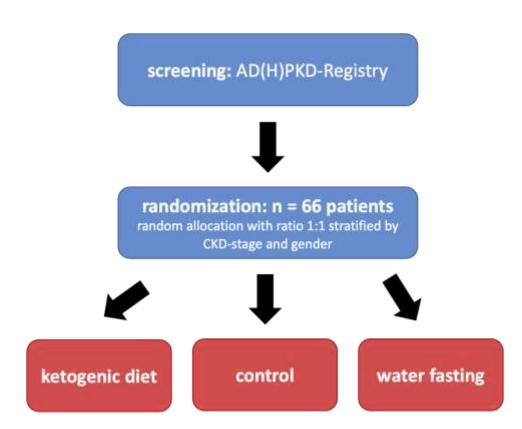
A translational pipeline for ketogenic interventions in ADPKD



A translational pipeline for ketogenic interventions in ADPKD

KETO-ADPKD: randomized controlled trial

1) balanced standard diet


2) ketogenic diet

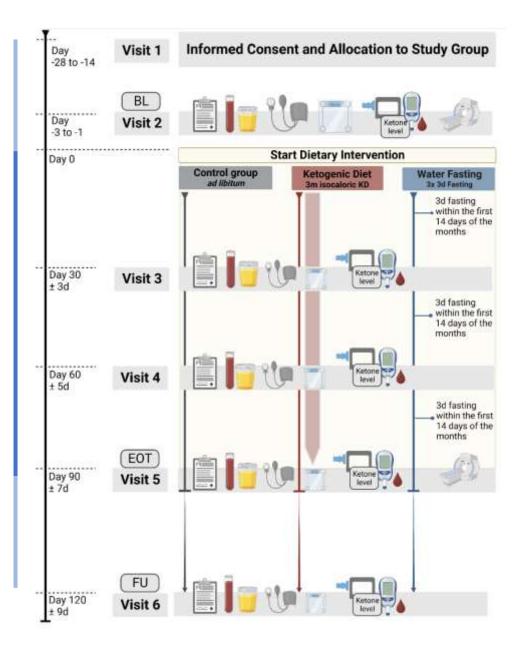
3) 3-day water fasting 1x/month

Cukoski, Lindemann et al. Cell Reports Medicine 2023

KETO-ADPKD: randomized controlled trial

the importance of well-characterized cohorts: rapid recruitment in a single center

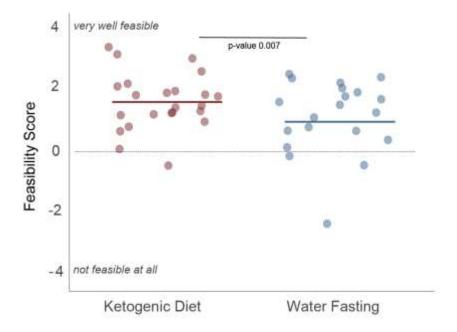
n = 1500 patients


run-in phase (1 month)

intervention phase (3 months)

MRI #1

washout phase (1 month)


KETO-ADPKD: balanced at baseline

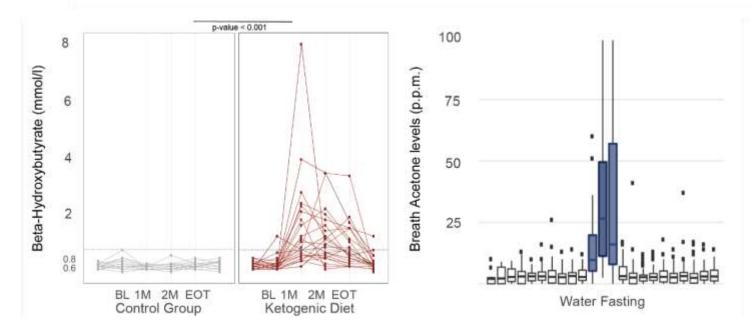
	Overall (n=63)	Control Group (n=19)	Ketogenic Diet (n=23)	Water Fasting (n=21)
Male	32 (50.79)	10 (52.63)	11 (47.83)	11 (52.38)
Age, years	41.41(±9.55)	41.26(±10.49)	41.26(±9.94)	41.71(±8.67)
BMI	25.65(±3.86)	25.14(±4.28)	25.85(±3.78)	24.98(±3.34)
htTKV, ml/m	958.04(±651.57)	838.04(±424.85)	896.47(±511.77)	1134.05(±902.75)
htTLV, ml/m	1305.55(±825.91)	1394.75(±1047.96)	1106.49(±514.93)	1442.87(±872.72)
Mayo Class 1A-B	11 (17.46)	3 (15.79)	5 (21.74)	3 (14.29)
Mayo Class 1C-E	52 (82.54)	16 (84.21)	18 (78.26)	18 (85.71)
eGFR ml/min/1.73 m ²	84.01(±24.00)	82.24(±22.62)	85.77(±22.56)	83.66(±27.52)
CKD1	25 (41.27)	6 (31.58)	10 (43.48)	9 (42.86)
CKD2	24 (38.09)	9 (47.37)	8 (34.78)	7 (33.33)
CKD3a	9 (14.29)	2 (10.53)	4 (17.39)	3 (14.29)
CKD3b	5 (79.37)	2 (10.53)	1 (4.35)	2 (9.52)
Urological complications <35 years	26 (41.27)	6 (31.58)	10 (43.47)	10 (47.62)
Arterial hypertension <35 years	53 (84.13)	14 (73.68)	20 (86.95)	19 (90.48)

Cukoski, Lindemann et al. Cell Reports Medicine 2023

KETO-ADPKD: Feasible, but not always easy...

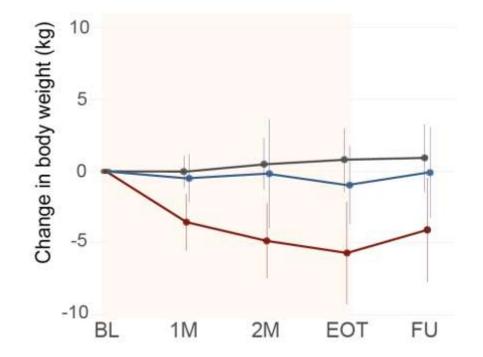
PRO questionnaire

+4 = no problem at all -4 = not feasible at all

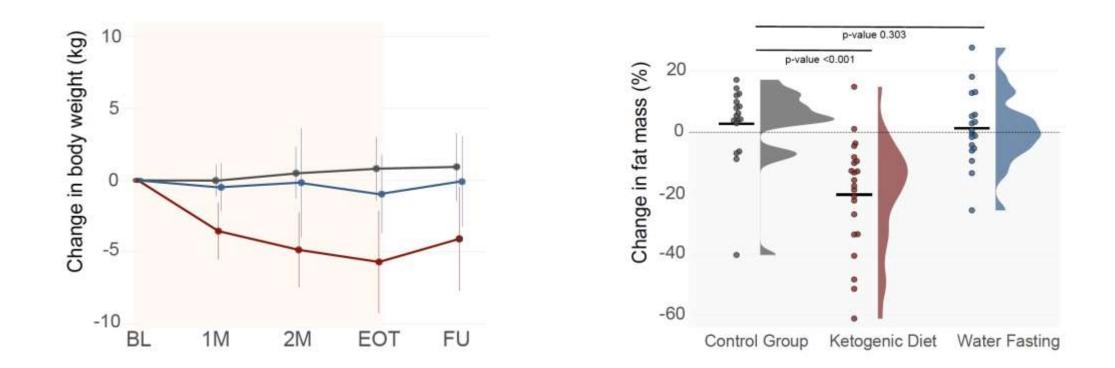

Cukoski, Lindemann et al. Cell Reports Medicine 2023

KETO-ADPKD: Feasible, but not always easy...

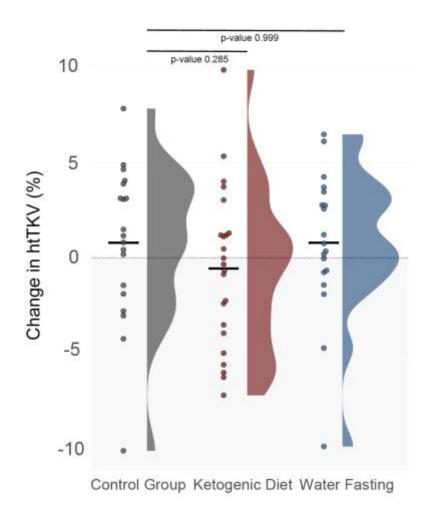
PRO questionnaire

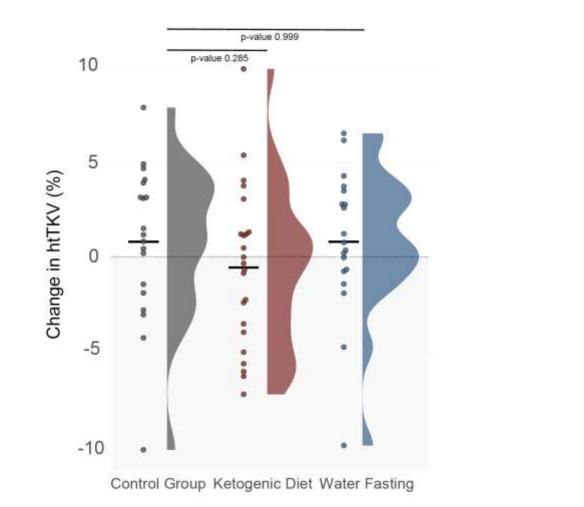


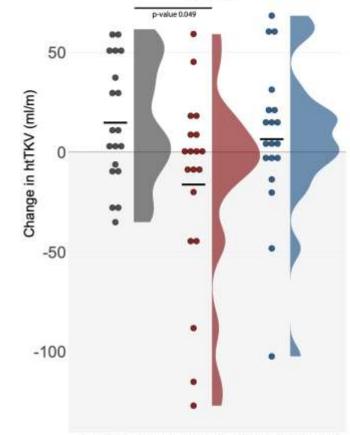
+ adherence? \rightarrow ketone bodies



+4 = no problem at all -4 = not feasible at all


KETO-ADPKD: Body weight...mainly fat mass

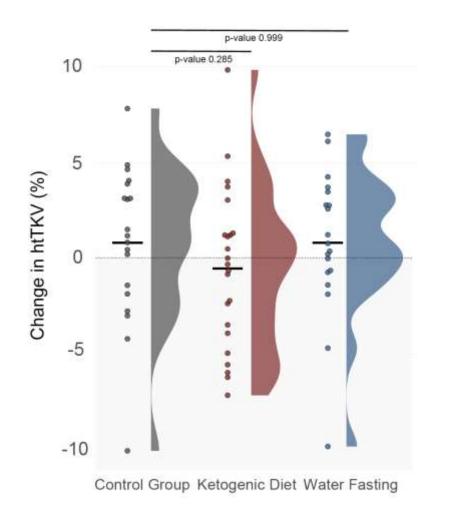

KETO-ADPKD: Body weight...mainly fat mass

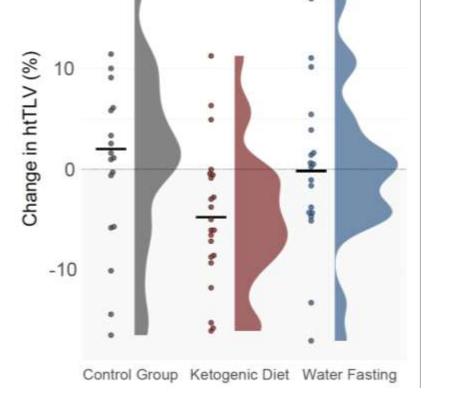


KETO-ADPKD: Total kidney volume

KETO-ADPKD: Total kidney volume

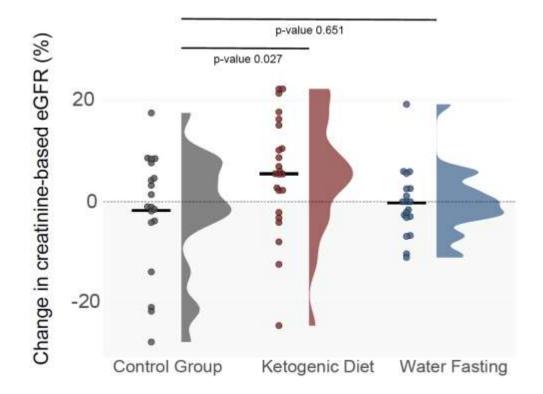
p-value 0.818

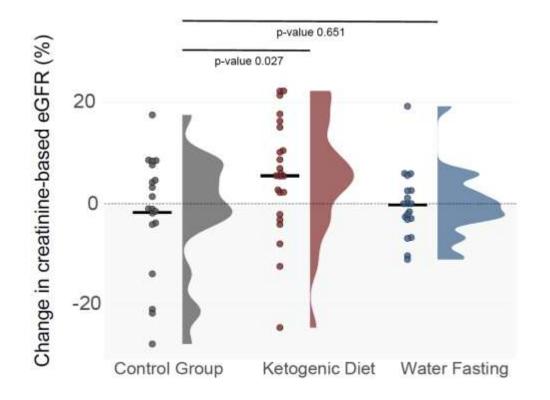

Control group Ketogenic Diet Water Fasting


unpublished posthoc analysis

KD: patients with BHB \geq 0.5mmol/l at 2/3 visits

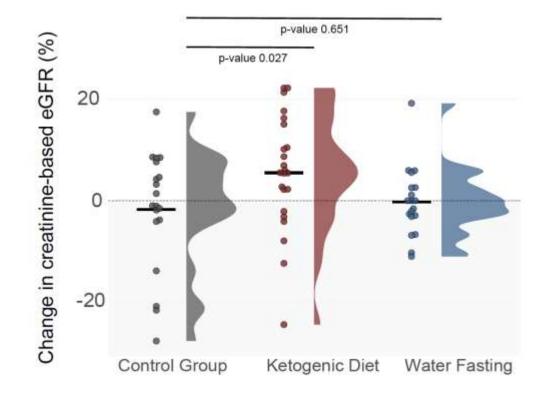
KETO-ADPKD: Kidney and liver volume

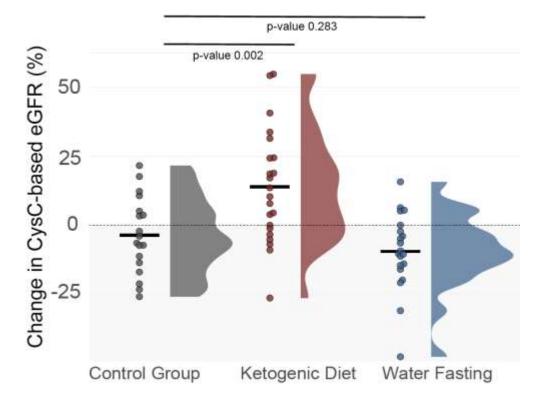


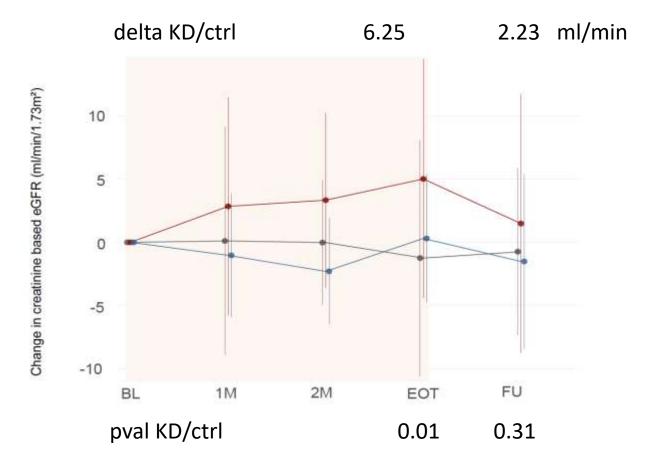


p-value 0.419

p-value 0.011


20





muscle mass?

meat intake?

KETO-ADPKD: Open questions regarding kidney function

Side effects?

Hyperfiltration?

Long-term effects?

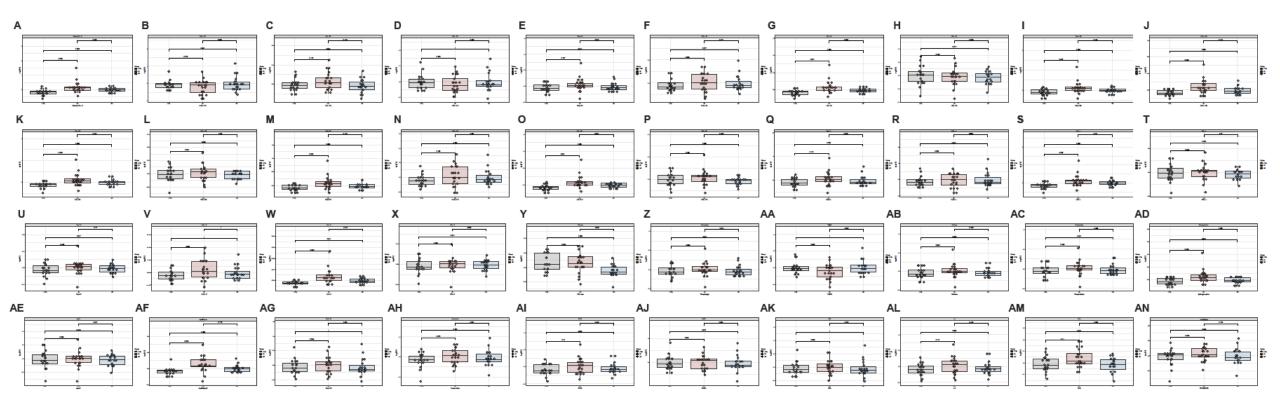
KETO-ADPKD: Side effects?

	Description	KD	WF	Control
		n(%)	n(%)	n(%)
AST/ALT	>ULN - 3.0x ULN (>50 - 150 U/I)	1(4)	0	1(5)
	>3.0x - 5.0x ULN (>150 - 250 U/I)	0	0	0
Creatinine	up to 1.5 x increase baseline	0	0	0
	>1.5 - 3.0 x increase baseline	0	0	0
Uric Acid	>ULN without gout specific symptoms (>7 mg/dl)	4(17)	1(5)	1(5)
	>ULN with gout specific symptoms (>7 mg/dl)	0	0	0
Triglycerides	150 - 300 mg/dL	1(4)	3(16)	1(5)
	>300 - 500 mg/dL	2(8)	0	1(5)
Cholesterol	>ULN (200 mg/dl) - 300 mg/dl	3(13)	0	0
	>300 - 400 mg/dL	1(4)	0	0
Events probably related	Orthostatic symptoms	4(17)	4(21)	0
to the intervention	Keto flu associated	10(43)*	3(16)	0
	Reflux symptoms	0	1(5)	0
Safety relevant event	Appendicitis	1(4)	0	0
with hospitalisation	Cyst infection	0	0	1(5)
	Nephrolithiasis	1(4)	0	0

transient Keto flu

KETO-ADPKD: Side effects?

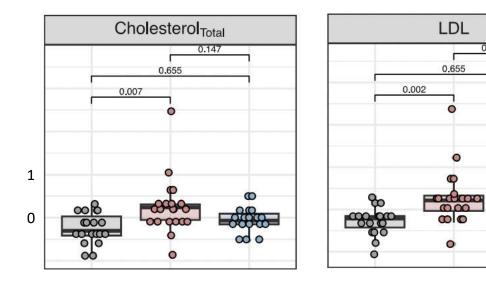
	Description	KD	WF	Control
		n(%)	n (%)	n(%)
AST/ALT	>ULN - 3.0x ULN (>50 - 150 U/I)	1(4)	0	1(5)
	>3.0x - 5.0x ULN (>150 - 250 U/I)		0	0
Creatinine	up to 1.5 x increase baseline	0	0	0
	>1.5 - 3.0 x increase baseline	0	0	0
Uric Acid	>ULN without gout specific symptoms (>7 mg/dl)	4(17)	1(5)	1(5)
	>ULN with gout specific symptoms (>7 mg/dl)	0	0	0
Triglycerides	150 - 300 mg/dL	1(4)	3(16)	1(5)
	>300 - 500 mg/dL	2(8)	0	1(5)
Cholesterol	>ULN (200 mg/dl) - 300 mg/dl	3(13)	0	0
	>300 - 400 mg/dL	1(4)	0	0
Events probably related	Orthostatic symptoms	4(17)	4(21)	0
to the intervention	Keto flu associated	10(43)*	3(16)	0
	Reflux symptoms	0	1(5)	0
Safety relevant event	ety relevant event Appendicitis		0	0
with hospitalisation	Cyst infection	0	0	1(5)
	Nephrolithiasis	1(4)	0	0


KETO-ADPKD: Side effects?

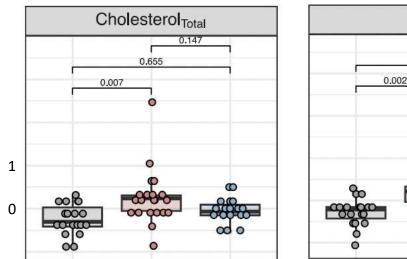
	Description	KD	WF	Control
		n(%)	n(%)	n(%)
AST/ALT	>ULN - 3.0x ULN (>50 - 150 U/I)	1(4)	0	1(5)
	>3.0x - 5.0x ULN (>150 - 250 U/I)	0	0	0
Creatinine	up to 1.5 x increase baseline	0	0	0
	>1.5 - 3.0 x increase baseline	0	0	0
Uric Acid	>ULN without gout specific symptoms (>7 mg/dl)	4(17)	1(5)	1(5)
	>ULN with gout specific symptoms (>7 mg/dl)	0	0	0
Triglycerides	150 - 300 mg/dL	1(4)	3(16)	1(5)
	>300 - 500 mg/dL	2(8)	0	1(5)
Cholesterol	>ULN (200 mg/dl) - 300 mg/dl	3(13)	0	0
	>300 - 400 mg/dL	1(4)	0	0
Events probably related	Orthostatic symptoms	4(17)	4(21)	0
to the intervention	Keto flu associated	10(43)*	3(16)	0
	Reflux symptoms	0	1(5)	0
Safety relevant event	Appendicitis	1(4)	0	0
with hospitalisation	Cyst infection	0	0	1(5)
	Nephrolithiasis	1(4)	0	0

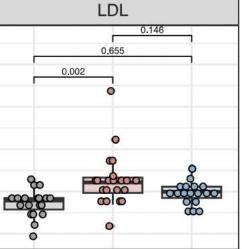
KETO-ADPKD: Distinct effects on cholesterol

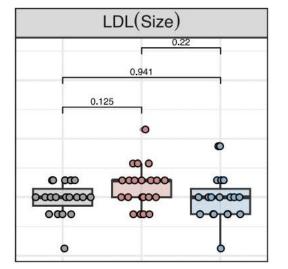
NMR lipidomics to obtain an in-depth view on cholesterol metabolism in ADPKD patients on ketogenic diets.

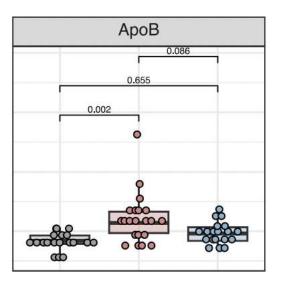


KETO-ADPKD: Distinct effects on cholesterol

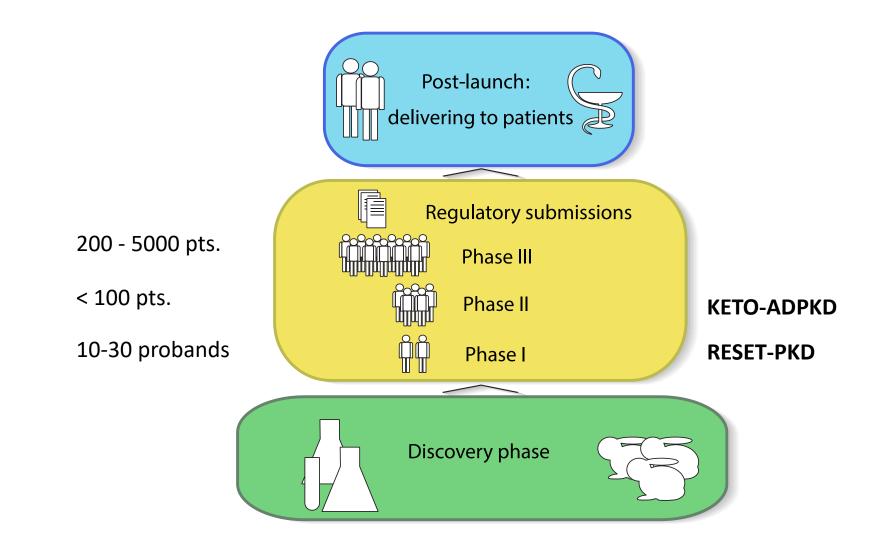

0.146

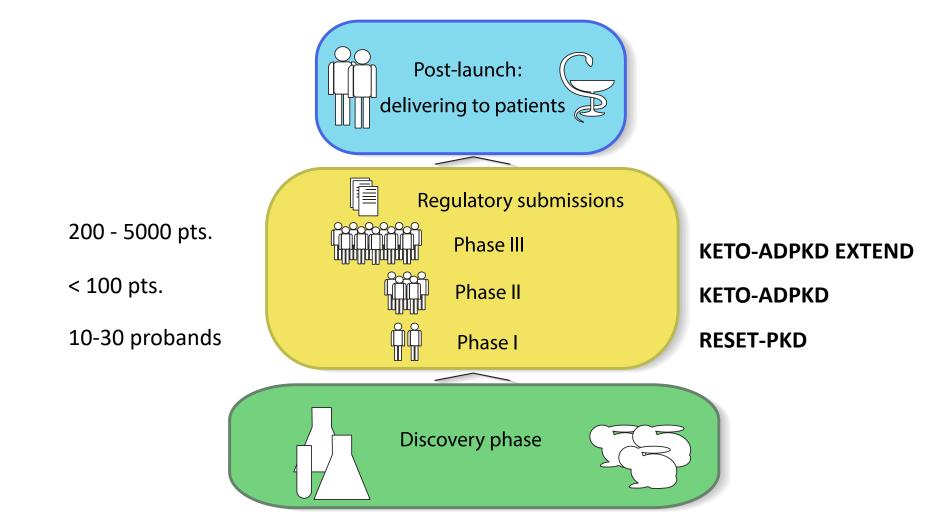

000000


log2 fold change baseline to end-of-treatment



KETO-ADPKD: Distinct effects on cholesterol

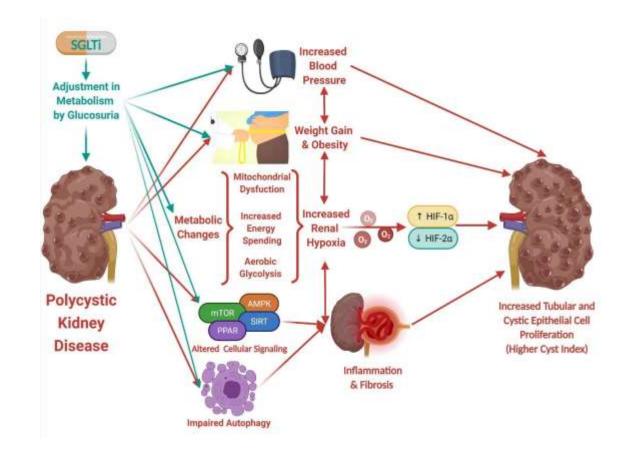




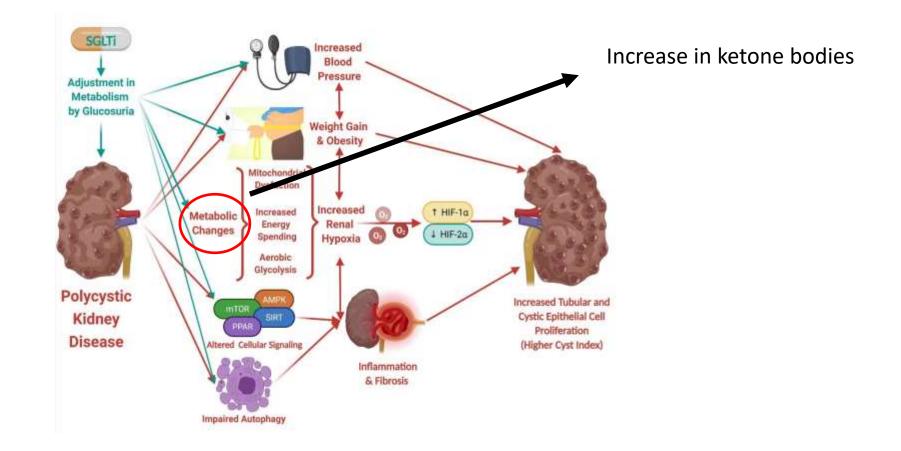
What do the results mean?

We are not there yet to provide a recommendation...

But we will get there together.


@NDTSocial

Higher beta-hydroxybutyrate ketone levels associated with a slower kidney function decline in ADPKD


associated with an improvement in kidney function slope. This result supports the hypothesis that ketogenic interventions may offer an effective treatment for individuals with ADPKD.

SGLT2-inhibition: many good arguments in ADPKD

Afsar et al. CKJ 2022

SGLT2-inhibition: many good arguments in ADPKD

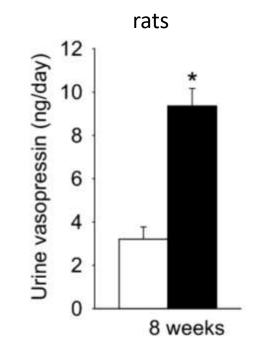
Afsar et al. CKJ 2022

Unfortunately, the answer is no....

Unfortunately, the answer is no....

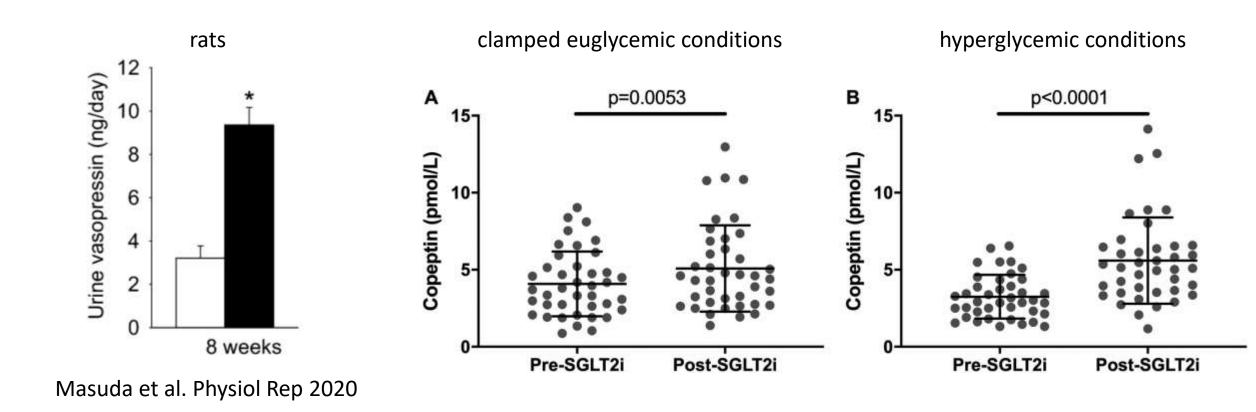
- ADPKD was an exclusion criterion in the CKD trials
- the preclinical data in PKD models are heterogenous

preclinical data on SGLT2i in PKD are inconclusive


study	model	SGLT2i	kidney function	kidney weight	other findings
Wang et al. KI 2013	Han:SPRD rat	phlorizin	1	Ļ	albuminuria 👢
Rodriguez Kidney Blood Press Res 2015	Han:SPRD rat	dapagliflozin	1	1	albuminuria 🖡
Kapoor PLoSOne 2015	PCK rat	dapagliflozin	?	1	albuminuria 🕇
Leonhard et al. eBioMedicine 2019	<i>Pkd1^{fl/fl}</i> inducible	canagliflozin	$ \longleftrightarrow $	-	-

Unfortunately, the answer is no....

- ADPKD was an exclusion criterion in the CKD trials
- the preclinical data in PKD models are heterogenous
- Could there be safety concerns (vasopressin)?



SGLT2i increases vasopressin in both animals and humans without PKD

Masuda et al. Physiol Rep 2020

SGLT2i increases vasopressin in both animals and humans without PKD

Lytvyn et al. Diabetes Metab. 2020

Sen et al Diabetes Obes Metab 2022

Unfortunately, the answer is no....

- ADPKD was an exclusion criterion in the CKD trials
- the preclinical data in PKD models are heterogenous
- Could there be safety concerns (vasopressin)?

Clinical trial urgently required.

Last message: KETO ≠ KETO

K Department II of Internal Medicine, Nephrology, Rheumatology, Diabetes and General Internal Medicine University Hospital of Cologne

Franziska Grundmann Sadrija Cukoski Christoph Lindemann **Theresa Brecht** Adrian Kühn Simon Oehm Sita Arjune Polina Todorova Cornelia Böhme Sebastian Strubl Johannes Schmidt Philipp Antczak Hande Aydogan + all of the ADPKD team Cologne

All the patients participating in the trials.

Thanks very much.

Cell Reports Medicine

Any more questions? nephrologie-adpkd@uk-koeln.de

