

Actualités thérapeutiques dans l'IRA

Stéphane Gaudry

M.D., Ph.D. MIR Hôpital Avicenne, Bobigny/ Hôpital Jean Verdier, Bondy CORAKID, UMRS 1155, Tenon, PARIS

UMRS 1155

Conflict of interest

Studies (AKIKI, AKIKI2, ICRAKI) funded by grants from French Ministry of Health and French Ministry of research

- Which vasopressor to improve renal outcomes?
- Vitamin B3 for renal protection ?
- How to personalize RRT initiation ?
- RRT modalities: what's new ?

Which vasopressor to improve renal outcomes?

To answer the question, we need to understand the **pathophysiological mechanisms** involved in acute kidney injury and distributive shock

REVIEW ARTICLE

Acute Renal Failure and Sepsis

Robert W. Schrier, M.D., and Wei Wang, M.D.

20 years ago.....

Endotoxin model Hypodynamic systemic circulation

- Low cardiac output
- Renal vasoconstriction

Renal Blood Flow (RBF) decrease

"In distributive shock, the main deficit lies in the periphery, with decreased systemic vascular resistance and altered oxygen extraction.

Typically, in such cases **cardiac output is high**, although it may be low as a result of associated myocardial depression"

Pr Rinaldo Bellomo

Haemodynamic measurements in conscious sheep

Renal blood flow measurement

- ·Central venous pressure
- ·Cardiac output, heart rate, stroke volume, maximum aortic flow, dF/dt.
- Regional flows and conductances
- urinary flow

Example of induction of experimental Gram negative sepsis: hemodynamics

Global renal blood flow

Renal vasodilation !!

≠ ischemic AKI

http://www.kidney-international.org © 2006 International Society of Nephrology

48 hours septic AKI model

Renal blood flow in experimental septic acute renal failure

C Langenberg¹, L Wan², M Egl², CN May³ and R Bellomo²

0.

How to explain that renal blood flow is dissociated from glomerular filtration rate ?

How to explain that renal blood flow is dissociated from glomerular filtration rate ?

Afferent arteriola vasodilation (+) and efferent arteriola vasodilation (+++)

Picod et al., Ann Intensive Care 2024

How to explain that renal blood flow is dissociated from glomerular filtration rate ?

Afferent arteriola vasodilation (+) and efferent arteriola vasodilation (+++)

Picod et al., Ann Intensive Care 2024

	Afferent vasoconstriction	Efferent vasoconstriction
Norepinephrine	+	+
Vasopressin	+	++
Angiotensin II	+	++

Edwards *et al.*, Am J Physiol 1983 Edwards *et al.*, Am J Physiol 1989 Denton *et al.*, Am J Physiol 2000

Vasopressors: the choice

Norepinephrine

Vasopressin

Angiotensin II

Vasopressors: the choice

Norepinephrine

Vasopressin

Angiotensin II

Vasopressin deficiency in septic shock

Vasopressin

ARTICLE

Vasopressin Deficiency Contributes to the Vasodilation of Septic Shock

Donald W. Landry, Howard R. Levin, Ellen M. Gallant, Robert C. Ashton, Susan Seo, David D'Alessandro, Mehmet C. Oz, and Juan A. Oliver

Landry et al., Circulation 1997

Vasopressin deficiency in septic shock

ARTICLE

Vasopressin Deficiency Contributes to the Vasodilation of Septic Shock

Donald W. Landry, Howard R. Levin, Ellen M. Gallant, Robert C. Ashton, Susan Seo, David D'Alessandro, Mehmet C. Oz, and Juan A. Oliver

Circulating vasopressin levels in septic shock

Tarek Sharshar, MD; Anne Blanchard, MD, PhD; Michel Paillard, MD; Jean Claude Raphael, MD; Philippe Gajdos, MD; Djillali Annane, MD, PhD

Sharshar et al., Crit Care Med 2003

Vasopressin

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 28, 2008 Vol. 358 NO.9

Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock

James A, Russell, M.D., Keith R, Walley, M.D., Joel Singer, Ph.D., Anthony C. Gordon, M.B., B.S., M.D., Paul C, Hébert, M.D., D. James Cooper, B.M., B.S., M.D., Cheryl L, Holmes, M.D., Sangeeta Melita, M.D., John T, Granton, M.D., Michelle M, Storms, B.Sc, N., Deborah J. Cook, M.D., Jeffrey J. Presnelli, M.B., B.S., Ph.D., and Dieter Ayers, M.Sc., for the VASST Investigators*

- Septic shock with ≥ 5µg/min norepinephrine
- Randomization:
 - Vasopressin (0.01 to 0.03 U/min)
 - vs norepinephrine
- N=778

VASST trial NEJM 2008

Vasopressin

ORIGINAL ARTICLE

Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy

Pavan K. Bhatraju^{1,2}, Leila R. Zelnick², Jerald Herting³, Ronit Katz², Carmen Mikacenic¹, Susanna Kosamo¹, Eric D. Morrell¹, Cassianne Robinson-Cohen², Carolyn S. Calfee^{4,5,6}, Jason D. Christie^{7,8}*, Kathleen D. Liu^{9,10}, Michael A. Matthay^{4,5,6}, William O. Hahn¹¹, Victoria Dmyterko¹, Natalie S. J. Slivinski¹², Jim A. Russell^{13,14}, Keith R. Walley^{13,14}, David C. Christiani^{15,16,17}, W. Conrad Liles¹⁸, Jonathan Himmelfarb², and Mark M. Wurfel^{1,2}

	Α	A Discovery				Replication		
			AKI-SP1	AKI-SP2			AKI-SP1	AKI-SP2
		Ang-2/Ang-1				Ang-2/Ang-1		
		sTNFR-1				sTNFR-1		
		Ang-2				Ang-2		
		sFas				IL-8		
dentification of AKI subphenotypes		sVCAM				IL-6		
		IL-6	1			G-CSF		
		Serum Creatinine	1			Vasopressors		
		Vasopressors	1			Serum Creatinine		
	00	IL-8	1		6	sFas	-	
	e e	G-CSF	Q		e e	sVCAM	-	
	ria	Sepsis	J 3		La La	ARDS		
Ļ	Va	Mechanical Ventilation			Va	Cirrhosis		
·	20	Cirrhosis			Sis	Sepsis		
classification model was applied to	aly	ARDS	Î.		aly	Mechanical Ventilation		
	An	Pneumonia			A	Caucasian		
patients with AKI in VASST	\$	WBC	1		SS	WBC		
	Ca l	Diabetes Mellitus	1		l B	Urinary Tract Infection		
	t	Body Mass Index	10		Į	Male		
	ate	Caucasian	1		ate	Pneumonia		
	12	Age	1 () ()			Age		
		Male			8	Hernatocrit	8	
		Surgery				Body Mass Index		
		Sodium				Diabetes Mellitus		
		Urinary Tract Infection				Urine Output		
		Urine Output	Ú.			Surgery		
		Hematocrit			8	Sodium		
		Platelets			2	Ang-1		
		Sodium Bicarbonate				Platelets		
		Ang-1			8	Sodium Bicarbonate		

Personnalization of vasopressor selection

Heat Map Legend (standardized values)

Vasopressin

AJRCCM

ORIGINAL ARTICLE

Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy

Pavan K. Bhatraju^{1,2}, Leila R. Zelnick², Jerald Herting³, Ronit Katz², Carmen Mikacenic¹, Susanna Kosamo¹, Eric D. Morrell¹, Cassianne Robinson-Cohen², Carolyn S. Calfee^{4,5,6}, Jason D. Christie^{7,8}, Kathleen D. Liu^{9,10}, Michael A. Matthay^{4,5,6}, William O. Hahn¹¹, Victoria Dmyterko¹, Natalie S. J. Slivinski¹², Jim A. Russell^{13,14}, Keith R. Walley^{13,14}, David C. Christiani^{15,16,17}, W. Conrad Liles¹⁸, Jonathan Himmelfarb², and Mark M. Wurfel^{1,2}

			AKI-S	P1	AKI-SP2				
		Norepinephrine	Vasopressin	RR (95% CI) [†]	P Value	Norepinephrine	Vasopressin	RR (95% CI) [†]	P Value
C	Clinical outcomes 7-d renal	24 (46)	23 (38)	0.80 (0.51–1.25)	0.32	44 (63)	44 (56)	0.99 (0.76–1.30)	0.96
	28-d mortality 90-d mortality	16 (31) 24 (46)	11 (18) 16 (27)	0.53 (0.30– 0.94) 0.54 (0.32–0.92)	0.03 0.02	30 (43) 34 (49)	31 (40) 35 (45)	1.03 (0.68–1.55) 0.99 (0.70–1.42)	0.88 0.99

Identification of AKI subphenotypes could improve risk prognostication and may be useful for predictive enrichment in clinical trials.

JAMA | Original Investigation

Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock The VANISH Randomized Clinical Trial

Anthony C. Gordon, MD; Alexina J. Mason, PhD; Neeraja Thirunavukkarasu, MSc; Gavin D. Perkins, MD; Maurizio Cecconi, MD; Magda Cepkova, MD; David G. Pogson, MB BCh; Hollmann D. Aya, MD; Aisha Anjum, BSc; Gregory J. Frazier, MSc; Shalini Santhakumaran, MSc; Deborah Ashby, PhD; Stephen J. Brett, MD; for the VANISH Investigators

- Randomization:
 - > Vasopressin (0.01 to 0.06 U/min)
 - ➤ vs norepinephrine
- N=409

Vasopressin

JAMA | Original Investigation

Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock The VANISH Randomized Clinical Trial

Anthony C. Gordon, MD; Alexina J. Mason, PhD; Neeraja Thirunavukkarasu, MSc; Gavin D. Perkins, MD; Maurizio Cecconi, MD; Magda Cepkova, MD; David G. Pogson, MB BCh; Hollmann D. Aya, MD; Aisha Anjum, BSc; Gregory J. Frazier, MSc; Shalini Santhakumaran, MSc; Deborah Ashby, PhD; Stephen J. Brett, MD; for the VANISH Investigators

Vasopressin

There was **less use of RRT in the vasopressin group** than in the norepinephrine group (25.4% for vasopressin vs 35.3% for norepinephrine; difference, -9.9% [95%CI, -19.3% to -0.6%]).

Vasopressin versus Norepinephrine in Patients with Vasoplegic Shock after Cardiac Surgery

The VANCS Randomized Controlled Trial

Vasopressin

primary endpoint composite of mortality or severe complications

	Variable	Norepinephrine (n = 151)	Vasopressin (n = 149)	Unadjusted Odds Ratio or Hazard Ratio or Between- group Difference (95% Cl)	P Value	Adjusted* Odds Ratio or Hazard Ratio or Between- group Difference (95%Cl)	P Value
	Primary outcome, n (%)	74 (49.0)	48 (32.2)	0.55 (0.38 to 0.80)	0.0014	0.52 (0.36 to 0.75)	0.0005
	30-d mortality	24 (15.9)	23 (15.4)	0.99 (0.56 to 1.76)	0.98	1.11 (0.62 to 1.96)	0.73
	MV > 48 h	13 (8.6)	8 (5.4)	0.62 (0.26 to 1.49)	0.28	0.62 (0.26 to 1.51)	0.30
	Sternal wound infection	15 (9.9)	7 (4.7)	0.46 (0.19 to 1.13)	0.09	0.48 (0.19 to 1.18)	0.11
	Reoperation	10 (6.6)	10 (6.7)	0.8 (0.52 to 1.23)	0.31	0.79 (0.51 to 1.22)	0.28
St	Stroke	4 (2.6)	4 (2.7)	1.03 (0.26 to 4.11)	0.97	1.08 (0.27 to 4.39)	0.91
	Acute renal failure	54 (35.8)	15 (10.3)	0.26 (0.15 to 0.46)	< 0.0001	0.26 (0.15 to 0.46)	< 0.0001
	Secondary outcomes, n (%)						
I)	Infection	23 (15.2)	16 (10.7)	0.67 (0.34 to 1.33)	0.25	0.71 (0.35 to 1.42)	0.33
-	Septic shock	13 (8.6)	9 (6.0)	0.68 (0.28 to 1.65)	0.40	0.73 (0.3 to 1.81)	0.50
Atrial fibrillation Ventricular arrhythmias Length of ICU stay (d), median (IQR) Length of hospital stay (d), median (IQR)	Atrial fibrillation	124 (82.1)	95 (63.8)	0.38 (0.22 to 0.65)	0.0004	0.37 (0.22 to 0.64)	0.0004
	32 (21.2)	27 (18.1)	0.82 (0.46 to 1.46)	0.50	0.8 (0.45 to 1.43)	0.45	
	Length of ICU stay (d), median (IQR)	6 (4 to 9)	5 (4 to 7)	-2.42 (-4.11 to -0.73)	0.0050	-2.28 (-3.94 to -0.62)	0.0071
	Length of hospital stay (d), median (IQR)	13 (10 to 20)	10 (8 to 12)	-3.76 (-6.1 to -1.42)	0.0016	-3.66 (-6.01 to -1.32)	0.0022

Table 2. Primary and Secondary Outcomes in the Two Groups

- Vasodilatory shock after cardiac surgery requiring vasopressors
- Randomization:
 - Vasopressin (0.01 to 0.06 U/min)
 - vs norepinephrine
- N=330

SYSTEMATIC REVIEW

Vasopressin in septic shock: an individual patient data meta-analysis of randomised controlled trials

- No effect on 28-day mortality RR [0.86-1.12]
- Vasopressin reduced the requirement for RRT RR 0.86 [0.74-0.99]

IPDMA

• Dunser et al.

Nagendran et al., Intensive Care Med 2019

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Optimal Vasopressin Initiation in Septic Shock The OVISS Reinforcement Learning Study

Alexandre Kalimouttou, MD; Jason N. Kennedy, MS; Jean Feng, PhD; Harvineet Singh, PhD; Suchi Saria, PhD; Derek C. Angus, MD, MPH; Christopher W. Seymour, MD, MSc; Romain Pirracchio, MD, MPH, PhD

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Optimal Vasopressin Initiation in Septic Shock The OVISS Reinforcement Learning Study

Alexandre Kalimouttou, MD; Jason N. Kennedy, MS; Jean Feng, PhD; Harvineet Singh, PhD; Suchi Saria, PhD; Derek C. Angus, MD, MPH; Christopher W. Seymour, MD, MSc; Romain Pirracchio, MD, MPH, PhD

CONCLUSIONS AND RELEVANCE In adult patients with septic shock receiving norepinephrine, the use of vasopressin was variable. A reinforcement learning model developed and validated in several observational datasets recommended more frequent and earlier use of vasopressin than average care patterns and was associated with reduced mortality.

Vasopressin

There are **arguments to suggest that vasopressin improves renal outcomes** but there is **still no RCT** that demonstrates a positive effect

It is urgent to conduct such a trial

Vasopressors: the choice

Norepinephrine

Vasopressin

Angiotensin II

Angiotensin II

Angiotensin II deficiency in septic shock

Picod et al., Ann Intensive Care 2024

Research Angiotensin II in experimental hyperdynamic sepsis

Li Wan^{1,2,3,4}, Christoph Langenberg¹, Rinaldo Bellomo^{2,3} and Clive N May¹

Angiotensin II

RBF goes down with Angiotensin II

Open Access

Research Angiotensin II in experimental hyperdynamic sepsis

Li Wan^{1,2,3,4}, Christoph Langenberg¹, Rinaldo Bellomo^{2,3} and Clive N May¹

Open Access

Angiotensin II

The NEW ENGLAND JOURNAL of MEDICINE

AUGUST 3, 2017

Angiotensin II for the Treatment of Vasodilatory Shock

Ashish Khanna, M.D., Shane W. English, M.D., Xueyuan S. Wang, M.D., Kealy Ham, M.D., James Tumlin, M.D.,
Harold Szerlip, M.D., Laurence W. Busse, M.D., Laith Altaweel, M.D., Timothy E. Albertson, M.D., M.P.H., Ph.D.,
Caleb Mackey, M.D., Michael T. McCurdy, M.D., David W. Boldt, M.D., Stefan Chock, M.D.,
Paul J. Young, M.B., Ch.B., Ph.D., Kenneth Krell, M.D., Richard G. Wunderink, M.D., Marliea Ostermann, M.D., Ph.D.,
Raghavan Murugan, M.D., Michelle N. Gong, M.D., Rakshit Panwar, M.D., Johanna Hästbacka, M.D., Ph.D.,

Raphael Favory, M.D., Ph.D., Balasubramanian Venkatesh, M.D., B. Taylor Thompson, M.D., Rinaldo Bellomo, M.D.,

Jeffrey Jensen, B.S., Stew Kroll, M.A., Lakhmir S. Chawla, M.D., George F. Tidmarsh, M.D., Ph.D., and Adam M. Deane, M.D., for the ATHOS-3 Investigators*

VOL. 377 NO. 5

ESTABLISHED IN 1812

ATHOS 3 Trial

Angiotensin II

- Vasodilatory shock with ≥ 0.2µg/kg/min norepinephrineequivalent
- Randomization: Ang II (20 to 200 ng/kg/min) vs placebo

End Point	Angiotensin II (N=163)	Placebo (N=158)	Odds or Hazard Ratio (95% CI)	P Value
Primary efficacy end point: MAP response at hour 3 — no. (%)†	114 (69.9)	37 (23.4)	Odds ratio, 7.95 (4.76–13.3)	<0.001

Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II

James A, Tarrila, MDY: Baghama Mampan, MD, MS, HECP, ECZHY, Adam M, Donne, MD, PhDY: Markies Ommann, MD, PHCY Laurence W, Bann, MDY, Bady B, Harn, MDY: Starrauh Kathari, MD, MSCY Harold M, Sonihay MDY: Hot R. Proveds, MO, MA, MR, RCLM, MSC, FDCM, FERZ¹⁹, Anna Tikhena, MD, MD, FECM, FASHY, Serrer W, Endels MD, MCD, FASH, FCCM, MCD, Alexander Zachsels, MDY: Loc G: Revel MD, MD, PhDY: Marman L (2014). Hill Heavier, BS¹⁹: Size Keil, MAY: Lakhner's Classies MD, MD, Charge T, Tichmardt, MD, PhDY: Tanako Biblione, MD, MDBS, FJACCHT/CZGM, FAARAPPI Your Indust of the Anglosemon II: the file Troatment of Fight Chapar Heavier. J (2014).

CCM, March 2018

Angiotensin II

PATIENTS RECEIVING RRT AT RANDOMIZATION

1.0----- Placebo Angiotensin II 0.9 Treatment Day 28 EST (95% CI) Hazard Ratio (95% CI) 29.6% (18.6%, 41.4%) 0.515 (0.304, 0.817) Placebo 0118 0.8 53.2% (37.8%, 66.5%) Angiotensin II 0.7. Angiotensin II 0.6 -0.5 ž 0.4 ā 0.3 Placebo 0.2 -0.1-0.0 0 1 2 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 3 -4 5 -6 7 8 Time from Randomization (Days) Patients at risk, n Placebo 'Añ 40 36 33 32 29 28 27 26 26 26 -24 23 23 .24 19 19 19 10 18 18 18 17 17 17 17 16 15 33 31 25 25 24 23 Angiotensin II 37 34 -34 31 30 29 29 29 27 27 27 27 27 26 25 25 25 24 16

Survival

Liberation from RRT

ORIGINAL ARTICLE

Angiotensin II

Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock A Clinical Trial

Rinaldo Bellomo^{1,2}, Lui G. Forni^{3,4}, Laurence W. Busse⁵, Michael T. McCurdy⁶, Kealy R. Ham⁷, David W. Boldt⁸, Johanna Hästbacka⁹, Ashish K. Khanna^{10,11}, Timothy E. Albertson¹², James Tumlin¹³, Kristine Storey¹⁴, Damian Handisides¹⁴, George F. Tidmarsh^{14,15}, Lakhmir S. Chawla^{14,16}, and Marlies Ostermann¹⁷; on behalf of the ATHOS-3 Investigators

ORIGINAL ARTICLE

AJRCCM

Angiotensin II

Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock A Clinical Trial

Rinaldo Bellomo^{1,2}, Lui G. Forni^{3,4}, Laurence W. Busse⁵, Michael T. McCurdy⁶, Kealy R. Ham⁷, David W. Boldt⁸, Johanna Hästbacka⁹, Ashish K. Khanna^{10,11}, Timothy E. Albertson¹², James Tumlin¹³, Kristine Storey¹⁴, Damian Handisides¹⁴, George F. Tidmarsh^{14,15}, Lakhmir S. Chawla^{14,16}, and Marlies Ostermann¹⁷; on behalf of the ATHOS-3 Investigators

In patients with **renin concentrations above the study population median, angiotensin II** significantly **reduced 28-day mortality** to 28 of 55 (**50.9%**) patients compared with 51 of 73 patients (**69.9%**) treated with placebo (unstratified HR, 0.56; 95% CI, 0.35 to 0.88; p= 0.012)

There are **arguments to suggest that angiotensin II improves renal outcomes** but there is **still no RCT** that demonstrates a positive effect

It is urgent to conduct such a trial

RESEARCH ARTICLES

Open Access

Inhibition of circulating dipeptidyl-peptidase 3 by procizumab in experimental septic shock reduces catecholamine exposure and myocardial injury

Bruno Garcia^{1,2*}, Benoit ter Schiphorst^{1,2}, Karine Santos³, Fuhong Su¹, Laurence Dewachter⁴, Francisco Vasques-Nóvoa⁵, Estela Rocha-Oliveira⁵, Roberto Roncon-Albuquerque Jr.⁵, Theo Uba³, Oliver Hartmann³, Adrien Picod⁶, Feriel Azibani⁶, Jacques Callebert^{6,7}, Serge Goldman⁸, Filippo Annoni^{1,9}, Raphaël Favory², Jean-Louis Vincent^{1,9}, Jacques Creteur^{1,9}, Fabio Silvio Taccone^{1,9}, Alexandre Mebazaa^{6,10} and Antoine Herpain^{1,11}

RESEARCH ARTICLES

Open Access

Inhibition of circulating dipeptidyl-peptidase 3 by procizumab in experimental septic shock reduces catecholamine exposure and myocardial injury

Bruno Garcia^{1,2*}⁽ⁱ⁾, Benoit ter Schiphorst^{1,2}, Karine Santos³, Fuhong Su¹, Laurence Dewachter⁴, Francisco Vasques-Nóvoa⁵, Estela Rocha-Oliveira⁵, Roberto Roncon-Albuquerque Jr.⁵, Theo Uba³, Oliver Hartmann³, Adrien Picod⁶, Feriel Azibani⁶, Jacques Callebert^{6,7}, Serge Goldman⁸, Filippo Annoni^{1,9}, Raphaël Favory², Jean-Louis Vincent^{1,9}, Jacques Creteur^{1,9}, Fabio Silvio Taccone^{1,9}, Alexandre Mebazaa^{6,10} and Antoine Herpain^{1,11}

DPP3 Inhibition by Procizumab

Conclusion: Which vasopressor to improve renal outcomes?

- At the early phase of vasodilatory shock-associated AKI, renal blood flow is increased due to a **preferential efferent arteriole vasodilation.**
- **Vasopressin** is associated with a (moderate) reduction of the need for RRT (in secondary analyses)
- Angiotensin II might be associated with improved outcomes in patients with severe AKI (in secondary analyses)

> We still lack a precise strategy of vasopressor use in vasodilatory shock

- Timing of each vasopressor
- Potential combinations: Vasopressin + angiotensin II?

Vitamin B3 for renal protection ?

Vitamin B3 for renal protection?

The renal tubule returns ~140 l per day of filtered plasma water back to the circulation by establishing energy-intensive electrochemical gradients between the filtrate and vasculature.

 The renal tubule is highly metabolically active and requires a constant supply of ATP to provide the energy required to pump solutes across unfavourable gradients.

The kidney is second to the heart in mitochondrial abundance

$PGC1\alpha$ drives NAD biosynthesis linking oxidative metabolism to renal protection

Met T. Tran^{1,2}, Zsuzsanna K. Zsengeller^{1,2,2}, Anders H. Berg^{2,4}, Ellyahu V. Khankin^{1,3}, Manof K. Bhasin^{3,5}, Wondong Kim⁵, Clary B. Clish⁷, Isaac E. Stiffman⁴, S. Ananth Karumanchi^{3,3,8}, Eagene P. Rhee^{6,7} & Samir M. Parikh^{1,2}

Following transient local ischaemia:

- Renal function worsened
- Tubular <u>mitochondria swelled</u>
- Pronounced <u>accumulation of acylglycerols</u> developed in tubules

Pre-ischaemic normal morphology swollen mitochondria

Nicotine Adenine Dinucleotide (NAD+) has critical roles in the generation of ATP from fuel substrates and as a substrate for important enzymes that regulate cellular health and stress responses.

AKI and NAD+

AKI leads to decrease in NAD+ levels combination of <u>reduced NAD+ biosynthesis</u> and <u>increase NAD+ consumption</u>

Vitamine B3 a water-soluble vitamin family

- 1. Nicotinic acid (Niacin)
- 2. Nicotinamide (NAM)
- 3. Nicotinamide riboside (NR)

Vitamine B3 a water-soluble vitamin family

Joseph Goldberger 1874 -1929

Niacin (Vit B3) deficiency results in pellagra

- Photosensitive pigmented dermatitis
- Diarrhea
- Dementia

LETTER

Nature 2016

doi:10.1038/nature17184

$PGC1\alpha$ drives NAD biosynthesis linking oxidative metabolism to renal protection

Mei T. Tran^{1,2}, Zsuzsanna K. Zsengeller^{1,2,3}, Anders H. Berg^{3,4}, Eliyahu V. Khankin^{1,2}, Manoj K. Bhasin^{2,5}, Wondong Kim⁶, Clary B. Clish⁷, Isaac E. Stillman⁴, S. Ananth Karumanchi^{1,2,8}, Eugene P. Rhee^{6,7} & Samir M. Parikh^{1,2}

Exogenous NAM improve renal function (creatinine) in post-ischemic AKI mice or cisplatine-induced AKI

Human data

De novo NAD⁺ biosynthetic impairment in acute kidney injury in humans

Ali Poyan Mehr¹¹², Mei T. Tran¹¹², Kenneth M. Ralto^{12,332}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish^{10,9}, Kamal R. Khabbaz^{8,13}, Eugene P. Rhee^{6,9,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,13} and Samir M. Parikh^{10,13+}

Prospective cohort of patients exposed to renal ischemia by cardiac pump surgery

Human data

De novo NAD⁺ biosynthetic impairment in acute kidney injury in humans

Ali Poyan Mehr¹¹², Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,12}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish¹⁰⁹, Kamal R. Khabbaz^{4,13}, Eugene P. Rhee^{4,8,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,33} and Samir M. Parikh^{10,113+}

Prospective cohort of patients exposed to renal ischemia by cardiac pump surgery

Pilot RCT of oral Vitamin B3 (NAM) administration

Ali Poyan Mehr^{® 112}, Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,12}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish^{® 9}, Kamal R. Khabbaz^{8,13}, Eugene P. Rhee^{6,8,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,13} and Samir M. Parikh^{® 115+}

- Patients: Cardiac surgery
- Groups:
 - placebo
 - NAM 1g/day (d-1, d-0, d+1)
 - NAM 3g/day (d-1, d-0, d+1)

Pilot RCT of oral Vitamin B3 (NAM) administration

Ali Poyan Mehr^{® 11}2, Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,32}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish^{® 9}, Kamal R. Khabbaz^{3,13}, Eugene P. Rhee^{6,8,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,33} and Samir M. Parikh^{® 113+}

NAM administration increased blood and urine NAM

Pilot RCT of oral Vitamin B3 (NAM) administration

Ali Poyan Mehr^{® 11}2, Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,32}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish^{® 9}, Kamal R. Khabbaz^{3,13}, Eugene P. Rhee^{6,8,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,33} and Samir M. Parikh^{® 113+}

NAM administration increased blood and urine NAM

Pilot RCT of oral Vitamin B3 (NAM) administration

Ali Poyan Mehr^{® 112}, Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,12}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁹, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish^{® 9}, Kamal R. Khabbaz^{8,13}, Eugene P. Rhee^{6,3,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,13} and Samir M. Parikh^{® 113+}

> NAM administration associated with **lower level of cardiac injury markers** (Troponin T)

Pilot RCT of oral Vitamin B3 (NAM) administration

Ali Poyan Mehr^{® 112}, Mei T. Tran^{1,12}, Kenneth M. Ralto^{1,2,3,22}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner⁵, Ajay Kher¹, Steven H. Kim¹, Charbel C. Khoury⁶, Shoshana J. Herzig⁷, Mary E. Trovato⁸, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani⁶, Clary B. Clish[®]⁹, Kamal R. Khabbaz^{8,13}, Eugene P. Rhee^{6,3,10}, Sushrut S. Waikar⁴, Anders H. Berg^{11,13} and Samir M. Parikh[®]¹¹³⁺

NAM administration associated with **better estimated renal function**

Human data

De novo NAD⁺ biosynthetic impairment in acute kidney injury in humans

All Poyan Mehr^{®19}, Mei T. Tran¹¹⁴, Kenneth M. Ralto^{13,219}, David E. Leaf⁴, Vaughan Washco¹, Joseph Messmer¹, Adam Lerner³, Ajay Kher¹, Steven H. Kim¹, Charble C. Khoury¹, Shoshana J. Herzig¹, Mary E. Trovato¹, Noemie Simon-Tillaux¹, Matthew R. Lynch¹, Ravi I. Thadhani¹, Clary B. Clishl⁰, ¹ Kamal R. Khabbaz¹⁰⁵, Eugene P. Nhee^{13,19}, Sushurt S. Walkar¹, Anders H. Berg¹¹⁰ and Samir M. Parikh⁰, ¹¹³⁴

To summarize this first RCT

ARTICLES

and monthly	Name of Street			and the second second	
	fair second	manual and party	translation in	2	
Recognized Advanced					
THE OF LESS ADALASY LANSA LINE	digram in .	110854	int Paint of	the second se	1001
"His or his lotters and his solar, of change, 1271	Mail classes of Tax	units define on the	10010-04-0010	THE OWNER.	1.049
ingelances is charge \$150	40.00	10816	8.07.86	10.00	100
Their CP Internationals in resolution (1981)	-9925	41448	Line	54275	10106
The star of restar-10201	304	1010	1.11%	0.700	2404
will sold more shift.					
lim F	ProF	20104	8.8	342	178
1 (mail)	10.0	10.14	211.05	0.00	1,121
10m 1.	194	115.1	254	84.0	0.004
100.1	24	18-16	10.01	10.0	1011
- 107 (0.4. meeting).					
194-7 .	101	-90-214	(m. c)	812.00	1000
Jan F	10.0		+4.2.1	Xir D	1,006
791	15.18	- HE	14.01	2102	1740W
burl.	01-6	10-34	16-17	244	AND C.
1294 (col. seems W)					
Bas I	52.00	201.41	(44)(2)	(******	1.448
Dire 1	100.00	100-00	101-0	107/75	21491
0401	1411-00	100-241	100-114	patrus (174
The later of the l	256-56	- 24/8	10100	(mar)	1000
10:50 spite make coll					
(Her.)	11.4-10	14-10-000	10 10 10	10 (CAU	1,598
04417	10/5-70	18.01.01	10.14.00	- Mr. S. (7)	1.046
- 9m I	10.01		1010	10.0	1,085
1991 T	(1.4.6)	1000		10.00	1000
18.1a, (reser.58)					
740 F	100 100 100	101224-000	111,000,000	107 (AVA 40) -	10.04
line 1	101,000,000	- ACCENTS	Marc24740	COMPARENT OF A DESIGNATION OF A DESIGNAT	1086
Pag. 7	100 1 10,000	100 20 200	4.01.05456	100 110 1400	1104
545 S	10000	2017/108	1701011000	101.041.000	2.00
Advanta Easter				Contraction of the second s	1.1.1
Amount 1 or (%).	1.04		10.000	100	1ett.
File savets' cris-	0.00	1.000	1991	4.08	1.040
Bag-1 - 50					
Tables + III	140	-17.	\$C5.	100	10.00
the st Denied Toronto.	1100	1.00	incise's	1.01	10.000
	1.20		1000		
1100 0 10			203		
Second Printed Streets		0.2.0	125		
A WARD AND REAL PROPERTY OF A DESCRIPTION OF A DESCRIPTIO	-	1.		125	
24,44				1.1	
Deep					
Daulog weights	19.1		100	1.25	
Constant of the second s					

Poyan Mehr Nat Med 2018

What's new since 2018?

Original Investigation

Kidney360

Niacinamide May Be Associated with Improved Outcomes in COVID-19-Related Acute Kidney Injury: An Observational Study

Nathan H. Raines,¹ Sarju Ganatra,² Pitchaphon Nissaisorakarn,¹ Amar Pandit,¹ Alex Morales,¹ Aarti Asnani,¹ Mehrmaz Sadrolashrafi,⁴ Rabul Maheshwari,³ Rushin Patel,² Vigyan Bang,² Katherine Shreyder,² Simarjeet Brar,² Amitoj Singh,² Sourbha S. Dani,² Sarah Knapp,⁶ Ali Poyan Mehr,² Robert S. Brown,¹ Mark L. Zeidel,¹ Rhea Bhargava,¹ Johannes Schlondorff,¹ Theodore I. Steinman,¹ Kenneth J. Mukamal,⁵ and Samir M. Parikh¹

niacinamide was associated with a lower risk of RRT or death

Is niacinamide useful in the treatment of COVIDassociated AKI?

Conclusion: Niacinamide was associated with lower risk of KRT/death and improved creatinine trajectory among patients with severe COVID-19-related AKI.

Nathan H. Raines, Sarju Ganatra, Pitchaphon Nissaisorakarn, et al. Niacinamide may be Associated with Improved Outcomes in COVID-19-Related Acute Kidney Injury: An Observational Study. Kidney360. doi: 10.34067/KID.0006452020. Visual Abstract by Joel Topf, MD

Niacinamide and Renal Recovery After AKI: A Randomized, Controlled Trial SA-OR04

Kohli, Harbir S.; Garg, Sahil; Kaur, Jaskiran; Yadav, Ashok K.; Kumar, Vivek

Author Information 😔

Journal of the American Society of Nephrology 34(11S):p 60, November 2023. | DOI: 10.1681/ASN.20233411S160b

SA-OR84

Niacinamide and Renal Recovery After AKI: A Randomized, Controlled Trial

Harbir S. Kohli, Sahil Garg, Jaskiran Kaur, Ashok K. Yadav, Vivek Kumat Post Graduate Institute of Medical Education and Research, Chandigarh, India.

Background: Incomplete recovery following community acquired acute kidney injury CA-AKI may be seen in 15-20% of patients. Strategies to improve recovery rates and follow-up of ence patients are required. The imprived NAD+ biosysthesis pathwary has been recently implicated in AKI. Nucinamide, which hyperses the salvage denovopathwary and produces NAD, could be protective. Its role in recovery following AKI has been postalated. In this pilot phase of clinical trial, role of maximumide supplementation in recovery affir CA-AK was invostigated.

Methods: The study was an open label, randomizud, controlled trial. Parlietums of CA-AK agad 18-70 years were enrolled. Underlying CKD, urinary tract obstruction, emilipanese, heart failure, pergumacy, lactating women or pose performance status were excluded. Participants were randomized to mcerve either niacinamide (500 mg BD for 14 days) or no antervantion. Fullow-up visits were at Land 4 months after baoptid discharge. The primiry outcome was in difference in renal measures at 4 months after baoptid discharge. Renal recovery was defined as ofFR att0 mimit1.73m² at 4 months after baoptid discharge. Secondary entrome measures were definements in cGPR between groups at 1 and 4 months after hespital discharge. Trial was prospectively segistered (CTRE202203-0448052).

Results: Over a period of 6 menths starting June 2022, 89 patients were screened, 50 patients were anvilled and randomized. Infections (70%), testic enversementions (8%), rhahdomyolysis (8%) and deug induced AKI (6%) were leading causes. Majority (4% of 50) had utage 3.0KI with 32 (64%) requiring kidney replacement therapy 6 patients expired and one patient did not report for follow up. FinaBy 43 patients were analyzed for ontocome measures. The elinical characteristics: age, sex, DM, HT, AKI strap, were similar between groups at baseline. Renal recovery at 4 months was significantly higher in the microarninelin group (20/21, 95.2%) as compared to the controls (15/22, 48,18%p0.023), eGFR (relimp/1.75m²) at 1 months (98.9%).27.9 vs 71.9%3.3 p0.5400 and 4 months (106.2×26.2 vs 71.7.53.3.5 p0.061) after hespital discharge were also significantly higher in the intervention group as compared to control group. No major drag-related adverse events were recorded.

Cuncleointe: Niacinamide supplementation improved renal recovery at 4 months after hospital discharge in patients with severe AKL.

Funding: Government Support - Non-U.S.

VIH U.S. National Library of Medicine

ClinicalTrials.gov

- Multicenter RCT
- Septic shock patients
- Nicotinamide 1g/day (72 hours)
- Primary outcome: MAKE-30

(Mortality; RRT; renal dysfunction)

Graft Acute Kidney Injury: Vitamin B3 to Facilitate Renal Recovery In the Early Life of a Transplant (GABRIEL)

ClinicalTrials.gov ID NCT05513807

- Sponsor ① Assistance Publique Hôpitaux de Paris
- Information provided by () Assistance Publique Hôpitaux de Paris (Responsible Party)
- Last Update Posted 1 2024-07-10

How to personalize RRT initiation?

Absolute indications to start RRT Life-threatening complications

• Refractory severe hyperkalemia

- Refractory severe metabolic acidosis (pH<7.15)
- Pulmonary edema resistant to diuretics

What is the question?

In critically ill patients with **severe AKI** who have **no life-threatening complication**, should we delay RRT?

2016 NEJM

THE HEAVEN	MULTING.	TOORMAL	OF MEDICIPEE.	

ORIGINAL ARTICLE

Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit

Stephaere Gaudry, M.D., David Hajaga, M.O., Produrnjue Schortger, M.D., Laurent Marijne Geleren, M.D., Berraral Reini, M.D., Eric Roulet, M.D., Alexandre Buyer, M.D., Gallaumo Cherrel, M.D., Nicofas Larrelle, M.O., Hh.D., Zoros Bretagnol, M.D., Ninzha Ste Praet, M.D., Bioto Stavi, M.G., Hh.D., Aros Bretagnol, M.D., Julien Mayara, M.D., Sado Havi, M.G., Hh.D., Julien Mayara, M.D., Ninzha Ste Praet, M.D., Beau, M.B., Sado Havi, M.G., Hh.D., Julien Mayara, M.D., Ninzha Ster, M.D., Sado Havi, M.G., Hh.D., Julien Mayara, M.D., Nin, J., Hafamir Yamin, M.D., Jiane Marre Fased, M.D., Guillaume Theory, M.D., Encore Tulasch, M.D., Ph.O., Jaco Damien Bizand, M.D., Nic, Burn Bidle Difference Tulasch, M.D., Ph.O., Jaco Damien Bizand, M.D., Nic, and Differe Diricities, M.D., Nichtoffer Yomir, Cher Roll Stavid Group?

AKIKI

2018 NEJM

ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy

in Patients with Acute Kidney Injury and Sepsis

S.D. Barbar, R. Clere-Jehl, A. Bourredjem, R. Hernu, F. Montini, R. Bruyère, C. Lebert, J. Bohé, J. Badie, J.-P. Eraldi, J.-P. Rigaud, B. Levy, S. Siami,

G. Louis, L. Bouadma, J.-M. Constantin, E. Mercier, K. Klouche, D. du Cheyron.

G. Piton, D. Annane, S. Jaber, T. van der Linden, G. Blasco, J.-P. Mira,

C. Schwebel, L. Chimot, P. Guiot, M.-A. Nay, F. Meziani, J. Helms, C. Roger,

B. Louart, R. Trusson, A. Dargent, C. Binquet, and J.-P. Quenot,

for the IDEAL-ICU Trial Investigators and the CRICS TRIGGERSEP Network*

2020
Lancet

Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials

 $\sim \sim \sim \sim$

Solyhare Gauly", Derict Hoppy", Nicolas Berickov I. Bhall Chalis", Soler Andre: Alexander Zachost, Northa Loekerg A. Berstlink, Seen V. Bogshow, Natachos Sola wat. Alan Controls: Golfanne Gert Tokanim Jamale: Agein Decharten, Jean-Piere Queratt. Doller Devyloxd

IPDMA

2020 NEJM

ORIGINAL ARTICLE Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group,

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group*

STARRT-AKI

- Multicenter RCT
- n=**620**
- Mixed ICU patients

- IDEAL-ICU
- Multicenter RCT
- n=**488**

•

• Septic ICU patients

• 10 RCTs

• n=1879

- Multicenter RCT
- n=**2927**
- Mixed ICU patients

Study Interventions

Within 6 hours after inclusion criteria

Pre-specified criteria

Severe hyperkalemia

potassium > 6 mmol/l, or > 5.5 mmol/l *Despite medical treatment*

- Severe acidosis (pH <7.15)
- Acute pulmonary edema due to fluid overload Responsible for severe hypoxemia
- Oliguria/Anuria >72 hours
- Serum urea concentration > 40mmol/l

Gaudry et al NEJM 2016

Spontaneous creatinine decrease

Does Hemodialysis Delay Recovery from Acute Renal Failure?

John D. Conger University of Colorado School of Medicine and the VA Medical Center, Denver, Colorado

Seminars in Dialysis—Vol 3, No 3 (July-Sept) 1990 pp 146-148

Intensive care medicine and renal transplantation 1

Management of patients at risk of acute kidney injury

Jill Vanmassenhove, Jan Kielstein, Achim Jörres, Wim Van Biesen

ORIGINAL ARTICLE

Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis

S.D. Barbar, R. Clere-Jehl, A. Bourredjem, R. Hernu, F. Montini, R. Bruyére, C. Lebert, J. Bohé, J. Badie, J.-P. Eraldi, J.-P. Rigaud, B. Levy, S. Siami,
G. Louis, L. Bouadma, J.-M. Constantin, E. Mercier, K. Klouche, D. du Cheyron, G. Piton, D. Annane, S. Jaber, T. van der Linden, G. Blasco, J.-P. Mira,
C. Schwebel, L. Chimot, P. Guiot, M.-A. Nay, F. Meziani, J. Helms, C. Roger, B. Louart, R. Trusson, A. Dargent, C. Binquet, and J.-P. Quenot, for the IDEAL-ICU Trial Investigators and the CRICS TRIGGERSEP Network⁴

In the delayed-strategy group, **38%** (93 patients) did not receive RRT 11 OCT 2018

488 patients

IDEAL-ICU

Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials

Stéphane Gaudry*, David Hajage*, Nicolas Benichou†, Khalil Chaibi†, Saber Barbar, Alexander Zarbock, Nuttha Lumlertgul, Ron Wald, Sean M Bagshaw, Nattachai Srisawat, Alain Combes, Guillaume Geri, Tukaram Jamale, Agnès Dechartres, Jean-Pierre Quenot‡, Didier Dreyfuss‡

42% never received RRT in the delayed group

Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group* STARRT-AKI 2020

Artificial Kidney-Induced Kidney Injury

ORIGINAL ARTICLE

Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group*

STARRT-AKI

Confirmation of this concept

RRT dependence after 90 days Early strategy: 10.4% vs Delayed strategy: 6.0% RR:1.74 (95% CI: 1.24 to 2.43)

ORIGINAL ARTICLE STARRT-AKI

Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group* Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials

Stéphane Gaudry*, David Hajage*, Nicolas Benichou†, Khalil Chaibi†, Saber Barbar, Alexander Zarbock, Nuttha Lumlertgul, Ron Wald, Sean M Bagshaw, Nattachai Srisawat, Alain Combes, Guillaume Geri, Tukaram Jamale, Agnès Dechartres, Jean-Pierre Quenot‡, Didier Dreyfuss‡

In the context of severe AKI, and in the absence of life-threatening complications (refractory severe hyperkalemia, refractory severe metabolic acidosis or pulmonary edema resistant to diuretics), delaying RRT initiation is recommended

High level of evidence

Major uncertainty remained concerning the duration for which RRT can be postponed without risk

Major uncertainty remained concerning the duration for which RRT can be postponed without risk

ICU admision

The Artificial Kidney Initiation in Kidney Injury 2 (AKIKI 2) A Multi-Centre, Randomized, Controlled Trial

Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial

Delayed Strategy Group

Pre-specified criteria

Severe hyperkalemia

potassium > 6 mmol/l, or > 5.5 mmol/l *Despite medical treatment*

- Severe acidosis (pH <7.15)
- Acute pulmonary edema due to fluid overload
 Responsible for severe hypoxemia
- Oliguria/Anuria >72 hours
- Serum urea concentration > 40mmol/l

Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial

Stelphane Gauding, David Hagiagi, Laurent Martin-Leferor, Said Lebhah, Guillaume Louis, Sébastien Moschietto, Dimini Titera-Braupart, Béatrice La Combe, Bertrand Pans, Nicolos de Prast, Sébasten Besset, Alain Combes, Adrian Robine, Marion Beuzelin, Julio Bada, Guillaume Chened, Jolien Bohe, Einabeth Couper, Nicolas Chudeau, Saber Barbar, Christophe Vincianneuu, Jean-Marie Forel, Diden Theyenin, Eric Boolet, Karim Lohhal, Madia Aissaoui, Stevem Grange, Marc Leane, Guillaume Lacave, Saad Nein, Florent Poisson, Julem Mayaux, Karim Asehnavan, Guillaume Geri, Kada Klouche, Guillaume Thiey, Laurent Argaud, Bertrand Razer, Cyril Cadar, Pascal Andreu, Jean Reignier*, Jean-Damine Ricord*, Jean-Piere Quenot*), Didler Drogfuss!

Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial

Stéphane Gaudry, David Hajage, Laurent Martin-Lefevre, Said Lebbah, Guillaume Louis, Sébastien Maschietto, Dimitri Titeca-Beauport, Béatrice La Combe, Bertrand Pons, Nicolas de Prast, Sébastien Besset, Alain Combes, Adrien Robine, Marion Beuzelin, Julio Badie, Guillaume Chevrel, Julien Bohé, Elisabeth Coupez, Nicolas Chudeau, Saber Barbar, Christophe Vinsonneau, Jean-Marie Forel, Didier Thevenin, Eric Boolet, Karim Lakhal, Nadia Aissaoui, Steven Grange, Marc Leone, Guillaume Lacave, Saad Niseir, Florent Poirson, Julien Mayaux, Karim Asehnoune, Guillaume Geri, Kada Klouche, Guillaume Thiery, Laurent Argaud, Bertrand Razer, Cyril Cadaz, Pascal Andreu, Jean Reignier*, Jean-Damien Ricard*, Jean-Pierre Quenot+, Didier Dreyfusst

Primary endpoint

The median number of RRT-free days was 12 days (IQR 0-25) in the delayed strategy and 10 days (IQR 0-24) in the more-delayed strategy (**p=0.93**)

Prespecified multivariate analysis

Odds ratio for death at 60 days 2.16 (95% CI, $1 \cdot 17 - 4 \cdot 01$, p=0.014) with more-delayed versus delayed strategy

	Univariable analysis		Multivariable analysis						
	Hazard ratio (95% CI)	p value	Hazard ratio (95% CI)	p value					
More-delayed strategy	1.34 (0.96–1.89)	0·13	1.65 (1.09–2.50)	0.018					
Simplified Acute Physiology Score III	1·03 (1·02–1·05)	<0.0001	1.03 (1.01–1.05)	0.0005					
Mechanical ventilation	2.90 (1.47-5.70)	<0.0001	3.44 (1.52-7.81)	0.0020					
Catecholamine infusion	1.69 (1.17–2.44)	0.0080	1.13 (0.69–1.84)	0.64					
Sepsis status		0·064	*	0·19					
Sepsis	0.78 (0.47-1.30)		0.56 (0.28–1.12)						
Septic shock	1·44 (0·98–2·12)	**	0.91 (0.51-1.64)	••					
Time between ICU admission and acute kidney injury	0.69 (0.36–1.31)	0.24	0.70 (0.31–1.59)	0.39					

NEURAKI study ICM; March, 2024

Intensive Care Med https://doi.org/10.1007/s00134-024-07339-1

ORIGINAL

Renal replacement therapy initiation strategies in comatose patients with severe acute kidney injury: a secondary analysis of a multicenter randomized controlled trial

Thomas Rambaud^{1,2}, David Hajage³, Didier Dreyfuss⁴, Saïd Lebbah³, Laurent Martin-Lefevre⁵, Guillaume Louis⁶, Sébastien Moschietto⁷, Dimitri Titeca-Beauport⁸, Béatrice La Combe⁹, Bertrand Pons¹⁰, Nicolas De Prost¹¹, Sébastien Besset¹², Alain Combes¹³, Adrien Robine¹⁴, Marion Beuzelin¹⁵, Julio Badie¹⁶, Guillaume Chevrel¹⁷, Julien Bohe¹⁸, Elisabeth Coupez¹⁹, Nicolas Chudeau²⁰, Saber Barbar²¹, Christophe Vinsonneau²², Jean-Marie Forel²³, Didier Thevenin²⁴, Eric Boulet²⁵, Karim Lakhal²⁶, Nadia Aissaoui²⁷, Steven Grange²⁸, Marc Leone²⁹, Guillaume Lacave³⁰, Saad Nseir³¹, Florent Poirson¹, Julien Mayaux³², Karim Ashenoune³³, Guillaume Geri³⁴, Kada Klouche³⁵, Guillaume Thiery³⁶, Laurent Argaud³⁷, Bertrand Rozec³⁸, Cyril Cadoz³⁹, Pascal Andreu⁴⁰, Jean Reignier⁴¹, Jean-Damien Ricard^{12,42}, Jean-Pierre Quenot^{39,43}, Romain Sonneville^{44,45} and Stéphane Gaudry^{1,4,46,47*}

Volume 50, Issue 3

March 2024

ORIGINAL

Renal replacement therapy initiation strategies in comatose patients with severe acute kidney injury: a secondary analysis of a multicenter randomized controlled trial

Thomas Rambaud^{1,2}, David Hajage³, Didier Dreyfuss⁴, Saïd Lebbah³, Laurent Martin-Lefevre⁵, Guillaume Louis⁶, Sébastien Moschietto⁷, Dimitri Titeca-Beauport⁸, Béatrice La Combe⁹, Bertrand Pons¹⁰, Nicolas De Prost¹¹, Sébastien Besset¹², Alain Combes¹³, Adrien Robine¹⁴, Marion Beuzelin¹⁵, Julio Badie¹⁶, Guillaume Chevrel¹⁷, Julien Bohe¹⁸, Elisabeth Coupez¹⁹, Nicolas Chudeau²⁰, Saber Barbar²¹, Christophe Vinsonneau²², Jean-Marie Forel²³, Didier Thevenin²⁴, Eric Boulet²⁵, Karim Lakhal²⁶, Nadia Aissaoui²⁷, Steven Grange²⁸, Marc Leone²⁹, Guillaume Lacave³⁰, Saad Nseir³¹, Florent Poirson¹, Julien Mayaux³², Karim Ashenoune³³, Guillaume Geri³⁴, Kada Klouche³⁵, Guillaume Thiery³⁶, Laurent Argaud³⁷, Bertrand Rozec³⁸, Cyril Cadoz³⁹, Pascal Andreu⁴⁰, Jean Reignier⁴¹, Jean-Damien Ricard^{12,42}, Jean-Pierre Quenot^{39,43}, Romain Sonneville^{44,45} and Stéphane Gaudry^{1,4,46,47*}

NEURAKI study

Post-hoc analysis of the AKIKI2 trial

• Adults

- Invasive MV and/or catecholamine infusion
- AKI Stage 3 of KDIGO classification
 - \circ + oliguria or an uria for more than 72 h
 - or BUN > 112 mg/dL (serum urea concentration of 40 mmol/L)
- Comatose at randomization (RASS<-3)

ORIGINAL

Renal replacement therapy initiation strategies in comatose patients with severe acute kidney injury: a secondary analysis of a multicenter randomized controlled trial

omas isimaau⁴⁴, David Hajage, Dider Literitus, Saat Lebahri, Laurent Marrin, Letever, Galillaume I. Saatem Mochetto, Tomin Tilesce-Beaugeritä Battine La Combine Beautin Physiciae Battan Battine, Hore (calillaume Dereit) Isaatem Boehr, Battine Comber, Hadren Kohlen, Sante Battan Physiciae Battan Battine, Battine Battine, Battine Boehr, Battine Comper, Historiae Comberg, Sante Battine, Constante Horsmann, Sante Battine, Cometto Isaatem Boehr, Battine, Battine, Hannes, Sante Battine, Constante Horsmann, 2018 ser Leoner, Galillaume Leaner, Saat Neer, Flerent Florenz, Julien Magauet, Karin Adhenouer, 2018 ser Leoner, Josepher Leaner, Saat Neer, Flerent Florenz, Harnes Mercard, Karin Adhenouer, 2018 Saat, Martine, Santer, Saat, Neer, Flerent Florenz, Harnes Martine, Condon Santer, 2016 adurt, 2016 Saat, 2016, Josepher Berger, Hannes Therent, Batter Battine, Batter Batter, 2016, adurt, 2016, adurt,

Outcomes

PRIMARY OUTCOME

transition intensity from coma to awakening during the first 28 days after randomization

Intensive Care Med https://doi.org/10.1007/s00134-024-07335

ORIGINAL

Renal replacement therapy initiation strategies in comatose patients with severe acute kidney injury: a secondary analysis of a multicenter randomized controlled trial

homas Kahnada¹¹, David Hajage, Liber Lheylus, Said Lebbah, Laurer Mattri-Lehere, Galliaure Lo Beater Moschert, Dimitr Theor-Beatery Testitice La Carbiel, Bettrant Parcel, Noclao E Prestri, Beater Moscher, J. Marian Combel, "Adren Robine", Marian Beatellin", Julios Mater, "Guillaurer Chered", Beater Beater, "Bastria Compet, "Andren Robine", Marian Beatellin, "Lostopher Wormsnau", Beater Beater, "Guillaurer Laurer, "Guillaurer Chered, "Said Materia, "Lostopher Wormsnau", Beater Leoner, "Guillaurer Laurer, "Said Neue", "Einer Tohano, "Laurer, Mayau," Kaim Alexanour," Beater Scheref, "Guillaurer Laurer, "Guillaurer Laurer, "Laurer, Magautt," Beater, Beater, "Cyclic Carbin, "Said Materia, "Guillaurer Laurer, "Johan Damiter, Beater, Martin, "Laurer, Martin, Martin, Saider, Martin, "Said Andre, "Guillaurer Scherer, "Guillaurer Laurer, "Johan Damiter, "Laurer, Angeutt," Beater, Beater, "Cyclic Carbin, "Said Neuer, "Said Neuer, "Guillaurer Competingen, "Johan Damiter, "Said Neuer, "Said Neuer, "Said Neuer, "Said Neuer, "Said Neuer, "Said Neuer, "Guillaurer Competingen, "Johan Damiter, "Laurer, Angeutt, "Beater, Beater, "Cyclic Carbin, "Said Neuer, "Guillaurer, Competingen, "Johan Damiter, "Laurer, Angeutt, "Beater, Beater, "Cyclic Carbin, "Said Neuer, "Said Neuer, "Guillaurer, Carbin, "Kaider, "Said Neuer," Frieder, Said Neuer, "Johan Saider, "Said Neuer, "Said Neuer,

Primary outcome

The transition intensity from coma to awakening was **lower in the moredelayed strategy group** (HR= 0.36 (0.17–0.78); p = 0.010)

The 2 sensitivity analyses yielding comparable results

. Probability of being awake according to the randomization

Secondary outcomes

An **increase of the plasma urea level** on a given day was associated with a significantly lower probability of being awake the following day

Table 2 Impact of plasmatic urea level a given day on the neurological state the following day

References	Coma	Awakening	Incomplete awaken- ing	Agitation	Death
Coma	1	0.983 (0.968–0.998), p=0.018	1.006 (0.995–1.015), p=0.283	1.012 (0.994–1.03), p=0.170	1.024 (1.002–1.048), p=0.039
Awakening	1.018 (1.002–1.033), p=0.018	1	1.024 (1.007–1.039), p=0.005	1.03 (1.012–1.049), p=0.002	1.042 (1.018–1.067), <i>p</i> < 0.001
Incomplete awakening	0.994 (0.985–1.005), p=0.282	0.977 (0.963 - 0.993), p = 0.005	1	1.006 (0.989–1.026), p=0.494	1.018 (0.995–1.044), p=0.129
Agitation	0.988 (0.971–1.006), p=0.170	0.971 (0.954–0.988), p=0.002	0.994 (0.975–1.012), p=0.496	1	1.012 (0.986–1.038), p=0.389
Death	0.977 (0.94 –0.998), p=0.039	0.96 (0.937–0.982), <i>p</i> < 0.001	0.982 (0.958–1.005), p = 0.129	0.989 (0.963 - 1.015), p = 0.390	1

Mechanisms underlying the observed benefits of RRT?

- Accumulation of uremic toxins
- Blood–brain barrier dysfunction
- Neurotoxicity of drugs
- Electrolyte imbalance (calcium and sodium disorders)

Mechanisms underlying the observed benefits of RRT?

Vanholder, Toxins, 2022

Uremic toxins: Good or bad ?

		IxS	IxG	KYN	AA	QA	Trp	Ind	IPA	IA	Mel	Nic	Ser	IAA	2PY
	bone disorders														
	carcinogenesis														
	cardiovascular dysfunction			1											
	cell senescence														
	depression														
	deficient drug metabolism														
	dyslipidemia														
	eosinophilia-myalgia						-								
	fibrosis														
	genomic alterations														
	hematopoietic dysfunction												1		1
	inflammation														
	insulin resistance		1					1				_			
	intestinal dysfunction													_	
	liver dysfunction														
	malnutrition	_								_					
	metabolic dysfunction			1											
	muscle atrophy								-	_		_	_	-	
Neurotoxicity	neurotoxicity														
	pain		-					_	-						
	progression CKD														
	sarcopenia										_				
	sleep disturbances										<u> </u>				
	skin disorders	-	1	_		_									
	thrombogenicity				1										
	tissue repair dysfunction														

Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials

Is there any <u>subpopulation of patients in ICU</u> which coul benefit from early or delayed RRT strategy ?

Stéphane Gaudry*, David Hajage*, Nicolas Benichou*, Khalil Chaibi*, Saber Barbar, Alexander Zarbock, Nuttha Lumlertgul, Ron Wald, Sean M Bagshaw, Nattachai Srisawat, Alain Combes, Guillaume Geri, Tukaram Jamale, Agnès Dechartres, Jean-Pierre Quenot‡, Didier Dreyfussi

2020

B 28-day mortality, n/N (%) Risk ratio (95% CI) Pinteraction **Delayed RRT** Early RRT Sex 0-869 228/528 (43%) 221/526 (42%) Male 1.02 (0.89-1.17) 138/309 (45%) 134/301 (45%) Female 1.00 (0.84-1.19) Age (years) 0.520 126/355 (35%) 143/388 (37%) ≤66 0.96 (0.79-1.16) 240/482 (50%) 212/439 (48%) >66 1.03 (0.91-1.17) SOFA score at randomisation 0.284 179/430 (42%) 165/425 (39%) s12 1.07 (0.91-1.26) 181/390 (46%) 185/383 (48%) >12 0.95 (0.82-1.09) Sepsis status at randomisation 0.062 98/209 (47%) 77/207 (37%) 1.22 (0.98-1.52) No sepsis 258/605 (43%) 267/600 (45%) 0.96 (0.85-1.09) Sepsis Chronic kidney disease* 0.359 No 243/600 (41%) 271/655 (41%) 0.97 (0.85-1.11) 92/180 (51%) 62/135 (46%) Yes 1.09 (0.87-1.37) Overall 1-01 (0-91-1-13) 0.25 0-5 Favours delayed Favours early

But

The <u>conventional subgroup analyses</u> performed "one variable at a time" fail to convey meaningful results as they cannot fully capture all the relevant

 \mathcal{O} Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials

Is there any subpopulation of patients in ICH which could benefit from early or delayed **P** egy?

Stéphane Gaudry*, David Hajage*, Nicolas Benichou†, Khalil Chaibi†, Saber Barbar, Alexander Zarbock, Nuttha Lumlertaul, Ron Wald, Sean M Bagshaw, Nattachai Srisawat, Alain Combes, Guillaume Geri, Tukaram Jamale, Agnès Dechartres, Jean-Pierre Quenot‡, Didier Dreyfuss‡

2020

But

The

onal subgroup analyses performed "one variable at a time" fail to convey meaningful results as they cannot fully capture all the relevant

An example:

Should treatment always be the same for **coronary artery disease**?

Sarah

59 yo Diabetes mellitus Insulin LVEF 50% Creatinine clearance 50ml/min Left main coronary artery disease

Donald

69 yo Diabetes mellitus No insulin LVEF 45% Creatinine clearance 40ml/min Three vessel artery disease

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 the SYNTAX Investigators MARCH 5, 2009

VOL 360 NO.10

Percutaneous Coronary Intervention versus Coronary-Artery Bypass Grafting for Severe Coronary Artery Disease

Patients "previously untreated three-vessel coronary disease and those with left main coronary artery disease"

Intervention "Percutaneous Coronary Intervention (PCI)"

Control "Coronary-Artery Bypass Grafting (CABG)"

Primary Outcome major adverse cardiac or cerebrovascular event (MACCE)

Months since Randomization

<u>Conclusion:</u> CABG remains the standard of care for patients with three-vessel or left main coronary artery disease, since the use of CABG, as compared with PCI, resulted in lower rates of the combined end point of major adverse cardiac or cerebrovascular events at 1 year

Redevelopment and validation of the SYNTAX score II to individualise decision making between percutaneous and surgical revascularisation in patients with complex coronary artery disease: secondary analysis of the multicentre randomised controlled SYNTAXES trial with external cohort validation

Kuniaki Takahashi, Patrick W Serruys, Valentin Fuster, Michael E Farkouh, John A Spertus, David J Cohen, Seung-Jung Park, Duk-Woo Park, Jung-Min Ahn, Arie Pieter Kappetein, Stuart J Head, Daniel J F M Thuijs, Yoshinobu Onuma, David M Kent, Ewout W Steyerberg, David van Klaveren, on behalf of the SYNTAXES, FREEDOM, BEST, and PRECOMBAT trial investigators

Heterogeneity of treatment effect

Sarah

59 yo Diabetes mellitus Insulin LVEF 50% Creatinine clearance 50ml/min Left main coronary artery disease

Donald

69 yo Diabetes mellitus No insulin LVEF 45% Creatinine clearance 40ml/min Three vessel artery disease

Could we do the same with the RRT initiation strategies?

RESEARCH

Open Access

Personalization of renal replacement therapy initiation: a secondary analysis of the AKIKI and IDEAL-ICU trials

François Grolleau^{1*}, Raphaël Porcher¹, Saber Barbar², David Hajage³, Abderrahmane Bourredjem⁴, Jean-Pierre Quenot^{5†}, Didier Dreyfuss^{6†} and Stéphane Gaudry^{7†}

Open Access

Personalization of renal replacement therapy initiation: a secondary analysis of the AKIKI and IDEAL-ICU trials

François Grolleau^{1*}, Raphaël Porcher¹, Saber Barbar², David Hajage³, Abderrahmane Bourredjem⁴, Jean-Pierre Quenot^{5†}, Didier Dreyfuss^{6†} and Stéphane Gaudry^{7†}

- Data from AKIKI and IDEAL-ICU
- Risk prediction model for RRT initiation within 48 hours (in delayed strategy)
- Estimate treatments effects within levels of predicted risks
- n=1107 patients

RESEARCH

Open Access

Personalization of renal replacement therapy initiation: a secondary analysis of the AKIKI and IDEAL-ICU trials

François Grolleau^{1*}, Raphaël Porcher¹, Saber Barbar², David Hajage³, Abderrahmane Bourredjem⁴, Jean-Pierre Quenot^{5†}, Didier Dreyfuss^{6†} and Stéphane Gaudry^{7†}

Patients at **intermediate-high risk** of RRT initiation within 48 h may have benefited from an early strategy (absolute risk difference, 14%; 95% CI, – 27% to – 1%)

Initiation Strategies for Renal-Replacement Therapy in the Intensive Care Unit:

\$

0

ð

ã

8

a Precision Medicine Approach

Plug values from the time point when severe acute kidney injury occurs* (KDIGO III or RIFLE failure stage).

SOFA

range in training data: 3 to 21

10	0
pH range in training data: 6.88 to 7.54	
7,3	0

Potassium (mmol/L)

range in training data: 2.4 to 7.4 mmol/L.

2.20	
4.5	-
4,0	~

Urea (mmol/L)

range in training data: 2 to 59 mmol/L

20			

Weight (kg)

range in training data: 34 to 200 kg

80

Immunosuppressive Drug (non-corticosteroid)

O Yes

O No

*Provided the patient meets inclusion/exclusion criterion for the AKIKI or IDEAL-ICU trials.

RRT = Renal-Replacement Therapy; CI = Confidence Interval; HR = Hazard Ratio; ARD = Absolute Risk Difference

The predicted probablity of RRT initiation within 48 hours is 18% which corresponds to the 60-day mortality outcome below.

RESEARCH

Open Access

Personalization of renal replacement therapy initiation: a secondary analysis of the AKIKI and IDEAL-ICU trials

François Grolleau^{1*}, Raphaël Porcher¹, Saber Barbar², David Hajage³, Abderrahmane Bourredjem⁴, Jean-Pierre Quenot^{5†}, Didier Dreyfuss^{6†} and Stéphane Gaudry^{7†}

One major issue:

Static case where the decision to initiate RRT is only pondered at AKI onsetdespite the **dynamic nature of AKI**

To learn an optimal RRT initiation strategy, the ideal method would be to conduct a **Sequential Multiple Assignment Randomized Trial (SMART)** where AKI patients are sequentially randomized each day (RRT or not)

Journal of the American Medical Informatics Association, 2024, 31(5), 1074–1083 https://doi.org/10.1053/jamia/oca0004 Arbance access publication 7 March 2024 Research and Applications

Research and Applications

Personalizing renal replacement therapy initiation in the intensive care unit: a reinforcement learning-based strategy with external validation on the AKIKI randomized controlled trials

François Grolleau, MD, PhD^{1,2,*}, François Petit, PhD^{1,1}, Stéphane Gaudry, MD, PhD^{3,4,5,†}, Élise Diard, MS^{1,2}, Jean-Pierre Quenot, MD, PhD^{5,7,8}, Didier Dreyfuss, MD^{5,9}, Viet-Thi Tran. MD, PhD^{1,2}, Raphaël Porcher (6), PhD^{1,2}

Statistical reinforcement learning based strategy

optimal dynamic strategies for RRT initiation ?

Journal of the American Medical Informatics Association, 2024, 31(5), 1074–1083 https://doi.org/10.1083/jamia/toca0004 Advance access publication 7 March 2024 Research and Applications

Research and Applications

Personalizing renal replacement therapy initiation in the intensive care unit: a reinforcement learning-based strategy with external validation on the AKIKI randomized controlled trials

François Grolleau, MD, PhD^{1,2,*}, François Petit, PhD^{1,1}, Stéphane Gaudry, MD, PhD^{3,4,5,†}, Élise Diard, MS^{1,2}, Jean-Pierre Quenot, MD, PhD^{5,7,8}, Didier Dreyfuss, MD^{5,9}, Viet-Thi Tran, MD, PhD^{1,2}, Raphaël Porcher (), PhD^{1,2}

Reinforcement learnin

Participants: adult ICU patients with severe AKI, receiving invasive MV and/or, catecholamine infusion

Primary outcome: hospital-free days at day 60

Figure 2

Inspired by funnel plots in meta-analysis

- **Each dot** = a **patient** for whom a decision whether to initiate RRT needed to be made
- Dot colors depict the RRT prescription
- On the on *x*-axis, predicted blips indicate on a « Hospital free day D60 » scale the magnitude of individual-patient harm (negative blips) or benefit (positive blips) from initiating RRT at a particular timepoint.
- Uncertainty in the individual-patient blips is represented on y-axis.

Dots falling in **gray-shaded aeras** represent patients for whom there is evidence of either **harm** (left-hand aeras), or **benefit** (right-hand aeras) **from RRT initiation** at the 0.05 alpha level.

• A crude strategy would recommend initiating RRT if a patient's dot fell on the <u>right-hand side of the dashed line</u>

Learning an optimal strategy....

- A crude strategy would recommend initiating RRT if a patient's dot fell on the <u>right-hand side of the dashed line</u>
- A stringent strategy would recommend initiating RRT only if a patient's dot fell in the right-hand gray-shaded aera.

Learning an optimal strategy....

Compared to current best practices (i.e., the standard-delayed strategy), the **crude** and **stringent** strategies yielded a 13.7 days and 14.9 days improvement in mean **hospital-free days at day 60** respectively

Compared to current best practices (i.e., the standard-delayed strategy), the **crude** and **stringent** strategies yielded a 13.7 days and 14.9 days improvement in mean **hospital-free days at day 60** respectively

Personalizing renal replacement therapy initiation in the ICU:

a statistical reinforcement learning approach

First day Plug values the variables below take at the time stage 3 KDIGO-AKI occurs.		Second day Plug values the variables below take just before stage 3 KDIGO-AKI occurrence + 24 hours.†		Third day Plug values the variables below take just before stage 3 KDIGO-AKI occurrence + 48 hours.‡		
70	0	SOFA range in validation set: 3 to 20		range in validation set: 5 to 151		
Creatinine (mg/dL) range in validation set: 0.3 to 10.4		10	\$	68	0	
2,5	0	Blood urea nitrogen (mg/dL)		Urine output (mL/kg/h) range in validation set: 0.0 to 4.5		
Blood urea nitrogen (mg/dL) range in validation set: 5 to 140		range in validation set: 5 to 215		0	0	
55	0	65	\$	· · · · · · · · · · · · · · · · · · ·		
Potassium (mmol/L) range in validation set: 2.6 to 8.0		pH (mmoi/L) range in validation set: 6.50 to 7.63				
5	0	7,35	0			
pH (mmol/L) range in validation set: 6.88 to 7.63				SEE INDIVIDUAL-PA	ATIENT RECOMMENDATION	
7,3	0	Urine output (mL/kg/h) range in validation set: 0.0 to 4.8			- Úm	
Urine output (mL/kg/h) range in validation set: 0.0 to 7.2		0	0		- Em	
0,1	0					

Personalizing renal replacement therapy initiation in the ICU: a statistical reinforcement learning approach

For a patient with stage 3 KDIGO-AKI and the evolving characteristics below, the stringent strategy recommends:

Example 1: the stringent strategy recommends RRT initiation on the third day

http://dynamic-rrt.eu/

Another example

- The crude strategy recommends to initiate RRT the second day
- The stringent recommend to initiate RRT the third day

http://dynamic-rrt.eu/

What is the future for personalization of RRT initiation?

- 1. Integrate the **recommendation system with the software of some ICU** for an automatic extraction at time 0 (KDIGO 3) and the data necessary to make recommendations
- 2. Make decisions jointly by intensivist and the recommendation system
- 3. After 5 years, **redevelop the recommendation system** to make it more robust

(it can now be trained on more data that has been automatically extracted and specifically collected to answer this question)

4. Repeat steps (1-3) every 5 years until system performance reaches a plateau

RRT modalities: what's new?

REVIEW ARTICLE

Julie R. Ingelfinger, M.D., Editor

Extracorporeal Kidney-Replacement Therapy for Acute Kidney Injury

Stéphane Gaudry, M.D., Ph.D., Paul M. Palevsky, M.D., and Didier Dreyfuss, M.D.

CRRT

IHD

Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial Lancet 2006 HEMODIAFE

Christophe Vinsonneau, Christophe Camus, Alain Combes, Marie Alyette Costa de Beauregard, Kada Klouche, Thierry Boulain, Jean-Louis Pallot, Jean-Daniel Chiche, Pierre Taupin, Paul Landais, Jean-François Dhainaut, for the Hernodiafe Study Group*

RESEARCH

Open Access

Stéphane Gaudry^{1,2,3,4*}, François Grolleau⁵, Saber Barbar⁶, Laurent Martin-Lefevre⁷, Bertrand Pons⁸, Éric Boulet⁹, Alexandre Boyer¹⁰, Guillaume Chevrel¹¹, Florent Montini¹², Julien Bohe¹³, Julio Badie¹⁴, Jean-Philippe Rigaud¹⁵, Christophe Vinsonneau¹⁶, Raphaël Porcher⁵, Jean-Pierre Quenot^{17,18,19†} and Didier Dreyfuss^{3,20†}

Critical Care 2022

RESEARCH

Continuous renal replacement therapy versus intermittent hemodialysis as first modality for renal replacement therapy in severe acute kidney injury: a secondary analysis of AKIKI and IDEAL-ICU studies

Stéphane Gaudry^{1,2,3,4*}, François Grolleau⁵, Saber Barbar⁶, Laurent Martin-Lefevre⁷, Bertrand Pons⁸, Éric Boulet⁹, Alexandre Boyer¹⁰, Guillaume Chevrel¹¹, Florent Montini¹², Julien Bohe¹³, Julio Badie¹⁴, Jean-Philippe Rigaud¹⁵, Christophe Vinsonneau¹⁶, Raphaël Porcher⁵, Jean-Pierre Quenot^{17,18,19†} and Didier Dreyfuss^{3,20†}

MATERIALS AND METHODS

- Secondary analysis of two multicentre RCTs (AKIKI and IDEAL-ICU)
- We merged the two datasets

Open Access

• We included **patients allocated to the early strategy** in order to emulate a trial where patients would have been randomised to receive either IHD or CRRT within 12 hours after severe AKI

RESEARCHOpen AccessContinuous renal replacement therapy
versus intermittent hemodialysis as first
modality for renal replacement therapy
in severe acute kidney injury: a secondary
analysis of AKIKI and IDEAL-ICU studies

Stéphane Gaudry^{1,2,3,4*}, François Grolleau⁵, Saber Barbar⁶, Laurent Martin-Lefevre⁷, Bertrand Pons⁸, Éric Boulet⁹, Alexandre Boyer¹⁰, Guillaume Chevrel¹¹, Florent Montini¹², Julien Bohe¹³, Julio Badie¹⁴, Jean-Philippe Rigaud¹⁵, Christophe Vinsonneau¹⁶, Raphaël Porcher⁵, Jean-Pierre Quenot^{17,18,19†} and Didier Dreyfuss^{3,20†}

The weighted Kaplan-Meier death rate at day 60 was 54.4% in the CRRT group and 46.5% in the IHD group (weighted HR 1.26, 95% CI 1.01 to 1.60) Initiation of Continuous Renal Replacement Therapy Versus Intermittent Hemodialysis in Critically III Patients with Severe Acute Kidney Injury: A Secondary Analysis of STARRT-AKI trial

Ron Wald¹, Stephane Gaudry², Bruno R. da Costa³, Neill K.J. Adhikari⁴, Rinaldo Bellomo⁵, Bin Du⁶, Martin P. Gallagher⁷, Eric A. Hoste⁸, François Lamontagne⁹, Michael Joannidis¹⁰, Kathleen D. Liu¹¹, Daniel F. McAuley¹², Shay P. McGuinness¹³, Alistair D. Nichol¹⁴, Marlies Ostermann¹⁵ Paul M. Palevsky¹⁶, Haibo Qiu¹⁷, Ville Pettilä¹⁸, Antoine G. Schneider¹⁹, Orla M. Smith²⁰, Suvi T. Vaara²¹, Matthew Weir²², Didier Dreyfuss²³, Sean M Bagshaw²⁴

On behalf of the STARRT-AKI Investigators§

Ron Wald

Sean Bagshaw

- All patients (early and delayed group)
- Propensity score methods
- **Primary outcome:** composite of death or RRT dependence at 90-days

Initiation of Continuous Renal Replacement Therapy Versus Intermittent Hemodialysis in Critically III Patients with Severe Acute Kidney Injury: A Secondary Analysis of STARRT-AKI trial

Ron Wald¹, Stephane Gaudry², Bruno R. da Costa³, Neill K.J. Adhikari⁴, Rinaldo Bellomo⁵, Bin Du⁶, Martin P. Gallagher⁷, Eric A. Hoste⁸, François Lamontagne⁹, Michael Joannidis¹⁰, Kathleen D. Liu¹¹, Daniel F. McAuley¹², Shay P. McGuinness¹³, Alistair D. Nichol¹⁴, Marlies Ostermann¹⁵ Paul M. Palevsky¹⁶, Haibo Qiu¹⁷, Ville Pettilä¹⁸, Antoine G. Schneider¹⁹, Orla M. Smith²⁰, Suvi T. Vaara²¹, Matthew Weir²², Didier Dreyfuss²³, Sean M Bagshaw²⁴

On behalf of the STARRT-AKI Investigators§

Ron Wald

Sean Bagshaw

After balancing baseline characteristics, CRRT was associated with a lower risk of the death or RRT dependence at 90-days compared with IHD (**OR 0.81**; **95% CI, 0.66-0.99**)

Initiation of Continuous Renal Replacement Therapy Versus Intermittent Hemodialysis in Critically III Patients with Severe Acute Kidney Injury: A Secondary Analysis of STARRT-AKI trial

Ron Wald¹, Stephane Gaudry², Bruno R. da Costa³, Neill K.J. Adhikari⁴, Rinaldo Bellomo⁵, Bin Du⁶, Martin P. Gallagher⁷, Eric A. Hoste⁸, François Lamontagne⁹, Michael Joannidis¹⁰, Kathleen D. Liu¹¹, Daniel F. McAuley¹², Shay P. McGuinness¹³, Alistair D. Nichol¹⁴, Marlies Ostermann¹⁵ Paul M. Palevsky¹⁶, Haibo Qiu¹⁷, Ville Pettilä¹⁸, Antoine G. Schneider¹⁹, Orla M. Smith²⁰, Suvi T. Vaara²¹, Matthew Weir²², Didier Dreyfuss²³, Sean M Bagshaw²⁴

On behalf of the STARRT-AKI Investigators§

STARRTØAKI

Ron Wald

Sean Bagshaw

After balancing baseline characteristics, CRRT was associated with a lower risk of the death or RRT dependence at 90-days compared with IHD (**OR 0.81**; **95% CI, 0.66-0.99**)

To summarize

- No modality of RRT shows clear superiority (mortality, hypotension)
- Previous studies provided conflicting results on renal recovery
 - A majority of **observational** studies
 - ✓ persistence of cofounding by indication
 - \checkmark renal recovery define strictly as independence from RRT

• We need **additional trials with composite outcome** (mortality and renal recovery)

Original Article

Study protocol and statistical plan for the ICRAKI trial: Intermittent haemodialysis versus continuous renal replacement therapy for severe acute kidney injury in critically ill patients*

ICRAKI trial

Inclusion rate: 501/1000

In my clinical practice

Within 24/48 hours after ICU admission

- Avoid RRT - Avoid UF

Before weaning off vasopressors

UF? Probably not...

After weaning off vasopressors

- UF +
- Adapt to goals and tolerance
- IHD for patients who need rehabilitation
- **CRRT** for **very fragile patients** with persistent capilary leak

If IHD: use **long sessions**!! Other option: <u>hybrid therapies</u>

CARDIOVASCULAR & RENAL

CLINICAL TRIALISTS

MERCI!

M.D., Ph.D. MIR Hôpital Avicenne, Bobigny/ Hôpital Jean Verdier, Bondy CORAKID, UMRS 1155, Tenon, PARIS

